







# VePAL TX130M+ DSn/PDH, Ethernet Analyzer

Please direct all questions to your local VeEX Sales Office, Representative, or Distributor. Or, contact VeEX technical support at www.veexinc.com. Copyright 2011 VeEX Incorporated. All rights reserved.

No part of this user manual may be reproduced, translated into a foreign language, or be transmitted electronically without prior agreement and written consent of VeEX Incorporated as governed by International copyright laws. Information contained in this manual is provided "as is" and is subject to change without notice. Trademarks of VeEX Incorporated have been identified where applicable, however the absence of such identification does not affect the legal status of any trademark.

# **Table of Contents**

- 1.0 Introduction
- 2.0 About This Guide
- 3.0 Safety Information
- 4.0 Basic Operations
  - 4.1 Keypad
  - 4.2 Touch-Screen Display
  - 4.3 Battery
  - 4.5 Connectors and Panels
    - 4.5.1 BNC Interface
    - 4.5.2 Ethernet Port
    - 4.5.3 Dual PDH/DSn Port
    - 4.5.4 Utility Ports
  - 4.6 LEDs
- 5.0 Home Menus
  - 5.1 Ethernet and PDH/DSn Home Menus
  - 5.2 Action Menu (Menu B only)
- 6.0 Menu A Ethernet/SyncE/1588v2/Common Features Setup
  - 6.1 Port Setup
  - 6.2 Port Status
  - 6.3 Laser Activation
  - 6.4 Profiles
  - 6.5 Measurement Settings
- 7.0 BERT
  - 7.1 BERT Setup
    - 7.1.1 Header Settings
    - 7.1.2 Traffic Settings
    - 7.1.3 Error Injection
    - 7.1.4 Control Settings
    - 7.1.5 Starting/Stopping a Bert Test

- 7.2 BERT Results
  - 7.2.1 Summary
  - 7.2.2 Errors
  - 7.2.3 Events
  - 7.2.4 Alarms
  - 7.2.5 Traffic
  - 7.2.6 Rates
  - 7.2.7 Delay
  - 7.2.8 Saving BERT Results
- 8.0 RFC 2544 Conformance Testing
  - 8.1 RFC 2544 Setup
    - 8.1.1 Header Settings
    - 8.1.2 Frame Settings
    - 8.1.3 Threshold Settings
    - 8.1.4 Throughput, Latency, Frame Loss, and Burst Settings
    - 8.1.5 Control Settings
    - 8.1.6 Starting/Stopping a RFC 2544 Test

# 8.2 RFC 2544 Results

- 8.2.1 Status and Events
- 8.2.2 Throughput
- 8.2.3 Latency
- 8.2.4 Frame Loss
- 8.2.5 Burst
- 8.2.6 Saving RFC 2544 Results
- 9.0 Throughput Testing (Multiple Streams)
  - <u>9.1 Setup</u>
    - 9.1.1 General Settings
    - 9.1.2 Control
    - 9.1.3 Per Stream Configurations
    - 9.1.4 Traffic Settings (Individual Stream Configurations)

9.1.5 Error Injection Settings (Individual Stream Configuration)

9.1.6 Starting/Stopping a Throughput (Multiple Streams) Test

9.2 Throughput Results

9.2.1 Viewing Test Results (Individual and Multiple Streams)

9.2.2 Global Results

9.2.3 Individual Stream Results

9.2.4 Saving Throughput (Multiple Streams) Results

10.0 Loopback

11.0 SyncE

11.1 SyncE Setup

11.1.1 Port (Test Port selection)

11.1.2 IP (IP Setup)

11.1.3 Mode (SyncE test mode)

**11.2 Clock Measurement** 

11.3 Wander Measurements Setup

# 12.0 1588v2/PTP

12.1 Setup

12.1.1 Mode (Test Mode)

12.2 Test Results

12.3 Protocol Monitor

# **13.0 Common Functions**

13.1 Additional Tests (Net Wiz)

13.2 Settings

13.3 Files

<u>13.4 Help</u>

13.5 Backlight

13.6 Tools

14.0 V-SAM

14.1 V-SAM Setup

14.1.1 Header Settings

## 14.1.2 Bandwidth Profile

14.1.3 Thresholds

14.2 Results

15.0 Menu B - PDH/DSn Setup

15.1 Signal Overview

15.1.1 Hierarchy

15.1.2 Interface

15.1.3 Payload

15.1.4 Pattern

**15.2 Measurement Configuration** 

15.2.1 Timer Setup

**15.2.2 Performance Analysis** 

15.2.3 General

15.3 Auto-Config

# 16.0 Results

16.1 PDH Results

16.1.1 Summary

16.1.2 PDH Errors/Alarms

16.1.3 Event Log

16.1.4 Signal

16.1.5 Analysis

16.1.6 Histograms

16.1.7 Graph

### 17.0 Alarms/Errors

17.1 Alarm Generation

18.0 E1/E3 Tools

18.1 E1/E3 Pulse Mask

18.2 E1 APS Testing

18.3 E1 Frame Words

18.4 Round Trip Delay

18.5 E1 Rx Data

18.6 E1 VF

**18.7 Jitter Measurement** 

**18.8 Wander Measurement** 

<u>18.9 V.54</u>

19.0 DS1/3 Tools

19.1 DS1 Pulse Mask

19.2 DS1 Loop

19.3 Round Trip Delay

19.4 DS1 Rx Data

19.5 DS3 Pulse Mask

19.6 DS3 FEAC

19.7 DS1 VF

**19.8 Jitter Measurement** 

20.0 Profiles

21.0 Additional Tests

21.1 ISDN PRI Call

21.1.1 Setup (PRI Call Setup)

21.1.2 Signal

21.1.3 Call - Voice Setup

21.1.4 Call - Data Setup

21.1.5 Data Call BERT Results (Result)

21.1.6 Supplementary Service Scan (Scan)

21.1.7 Multi Call

21.1.8 DTMF

21.1.9 DBackup

21.2 ISDN PRI Monitor

21.3 WAN IP Test

22.0 Warranty and Software

23.0 Product Specification

# 24.0 Certification and Declaration

# 25.0 About VeEX

Go back to top

# **1.0 Introduction**

Every effort was made to ensure that the information contained in this user manual is accurate. Information is subject to change without notice and we accept no responsibility for any errors or omissions. In case of discrepancy, the web version takes precedence over any printed literature.

(c) Copyright 2006-2012 VeEX Inc. All rights reserved. VeEX, VePAL are registered trademarks of VeEX Inc and/or its affiliates in the USA and certain other countries. All trademarks or registered trademarks are the property of their respective companies. No part of this document may be reproduced or transmitted electronically or otherwise without written permission from VeEX Inc.

This device uses software either developed by VeEX Inc or licensed by VeEX Inc from third parties. The software is confidential and proprietary of VeEX Inc. The software is protected by copyright and contains trade secrets of VeEX Inc or VeEX's licensors. The purchaser of this device agrees that it has received a license solely to use the software as embedded in the device, and the purchaser is prohibited from copying, reverse engineering, decompiling, or disassembling the software.

Go back to top

# 2.0 About This Guide

This user manual is suitable for novice, intermediate, and experienced users and is intended to help you successfully use the features and capabilities of the TX130M+. It is assumed the user has basic computer experience and skills, and is generally familiar with Cable TV and telecommunication concepts, terminology, and safety.

For more technical resources, visit VeEX Inc web site at <u>www.veexinc.com</u>.

If you need assistance or have questions related to the use of this product, call or e-mail our customer care department for customer support. Before contacting our customer care department, you must have your product serial number ready. Please go to <u>Basic Operations</u> section for details on locating your unit serial number in the menus or locate the serial number on the back of the chassis.

### **Customer Care:**

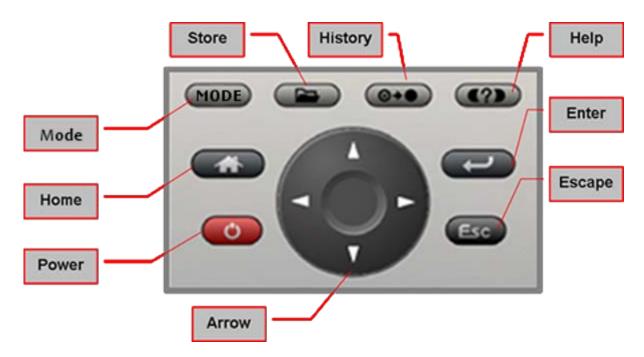
Phone: + 1 510 651 0500 E-mail: <u>customercare@veexinc.com</u> Website: <u>www.veexinc.com</u>

Go back to top

# 3.0 Safety Information



Safety precautions should be observed during all phases of operation of this instrument. The instrument has been designed to ensure safe operation however please observe all safety markings and instructions. Do not operate the instrument in the presence of flammable gases or fumes or any other combustible environment. VeEX Inc. assumes no liability for the customer's failure to comply with safety precautions and requirements.


# 4.0 Basic Operations

The unit is powered on and off from the red key on the keyboard area. In order to turn off the unit, press the power key for at least 2 seconds. If the unit is not responding, holding the power key down by more than 10 seconds will force the unit to power down.

### Go back to top

# 4.1 Keypad

The keyboard includes the following keys:



- Home key. Brings the unit to its home menu regardless of its location on the user interface.
- Mode key. Press the MODE key to toggle between Menu A and Menu B. Menu A features Ethernet, SyncE, 1588v2, and Common Functions. Menu B features PDH and DSn.
- Store key. Performs storage of current results in the memory of the test set. If the result is running, it will provide a snapshot at the moment the key is pressed. The Store function provides automatic storage with automatic naming and timestamping function. To manipulate a stored file, please go to 7.0 Files in the Common Functions manual.
- History key. Resets any blinking LED due to a history condition. For more details on the LED, please go to LEDs.
- Help key. Brings the user to the online help, regardless of the current user interface location of the unit.
- Arrow key. Moves the cursor in any of the four supported directions (left, right, up, down). The Arrow key works in conjunction with the Enter and Escape keys.
- Enter key. Provides an enter sequence to the user interface. It is used in non touch-screen operation mode to enter menus and functions.
- **Escape** key. Provides an escape sequence to the user interface. It is used in non touch-screen operation mode to escape menus and functions.

### Go back to top

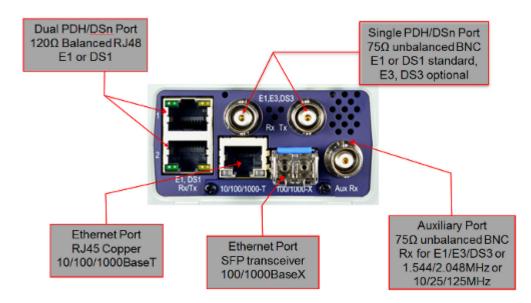
# 4.2 Touch-Screen Display

The LCD supports touch-screen operations. In order to use the unit in touch-screen mode, open the transparent door covering the screen. Then take out the stylus available on the top door i.e. door protecting the connector panel. Keep the LCD cover closed when using the unit on non touch-screen mode, and use the arrow, enter, and escape keys. The location of the cursor on the screen is indicated by a focus state. The focus state varies depending on the function or section of the test set.





# 4.3 Battery


The VePAL is equipped with an intelligent Li-ion rechargeable battery pack which is located in the rear of the unit. The battery will be partially charged upon delivery so it is recommended to charge the battery fully before use. It is recommended to charge the battery at room temperature to preserve its life and to obtain maximum charge. The battery can be removed during operation, provided the unit is connected to the AC Main using the supplied AC adapter. Removing the battery when not connected to the AC Main will cause the unit to shutdown. Remove the rubber cover on the left side to connect the AC Main adapter to the unit.



### Go back to top

# **4.5 Connectors and Panels**

The TX130M+ is equipped with the following physical test interfaces:



# 4.5.1 BNC Interface

75 ohm unbalanced BNC for E1, DS1, E3, DS3.

# Go back to top

# 4.5.2 Ethernet Port

RJ45 Copper 10/100/1000BaseT and SFP 100/1000BaseX.

# Go back to top

# 4.5.3 Dual PDH/DSn Port

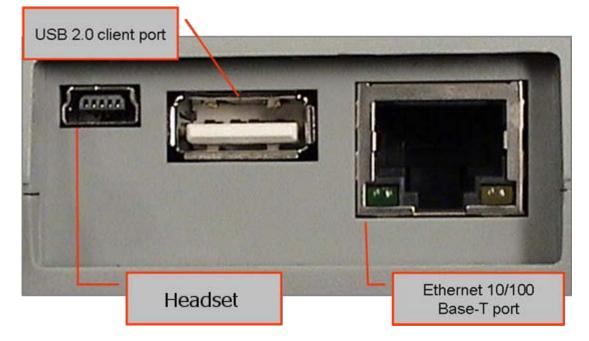
120 ohm Balanced RJ48 E1 and DS1.

## Go back to top

# 4.5.4 Utility Ports

The Ethernet and USB ports are located on the left and right side of the unit.

# • RJ45, 10/100/1000Base-T port:


- 10/100/1000Base-T Ports, RJ45 connector, IEEE 802.3 compliant
- A green LED on the RJ45 connector flashes when there is activity on the network.
- The green LED is On when there is a valid Ethernet link with the network and off when there is no link.

To access the Ethernet management port, remove the protective rubber cover on the right hand side of the unit to expose the connector. Ethernet applications include:

- IP connectivity testing
- WiFi Wiz testing
- Voice over IP (VoIP) testing
- IPTV testing
- Transfer measurement results and test profiles between the instrument and a computer using ReVeal MTX software
- Upload/download channel tables between the instrument and a computer using ReVeal MTX software
- $\circ~$  Upgrade the instrument software using ReVeal MTX software
- Remote control of the instrument using ReVeal MTX software (optional)
- USB Port:

To access the USB port, remove the protective rubber cover on the right hand side of the unit to expose the connector. The USB port supports:

- Memory drives
- WiFi adaptor for WiFi testing application



# 4.6 LEDs

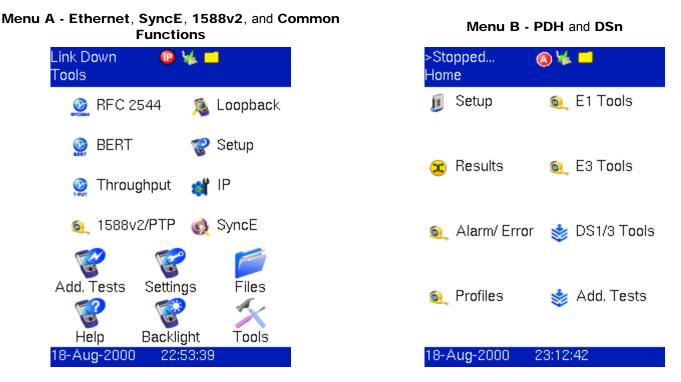
The TX130M+ is equipped with the following LEDs:

- Power LED: A single LED indicates the power state of the unit.
  - The LED is off when the unit is powered off.
  - The LED is green when the unit is powered on.
  - The LED is orange when the unit is connected to the AC Main and powered off.
- Signal LED Indicates presence of a valid input signal.
- Alarm / Error LED Indicates the presence of alarms or errors.
  - Green LED Indicates that no alarm/error has occurred
  - Red LED Indicates that at least one alarm/error has occurred during the test
  - Red flashing LED Indicates any alarms/errors that have occurred
  - Grey LED Indicates that no condition or a test that has not begun yet

**Note:** The Signal and Alarm/Error lights are separated according to whether the Signal or Error/Alarm refers to Ethernet (**ETH**) or **PDH** testing.

| Ved    | VePAL   | . TX130     | M+ 🛛 🖒  |
|--------|---------|-------------|---------|
| 0-E    | гн — 🌑  | <b>—</b> PI | DH-     |
| SIGNAL | ALM/ERR | SIGNAL      | ALM/ERR |

Note: Each LED is equipped with a History function.


Note: The History key on the rubber keyboard (O -> O) resets the soft LEDs on the GUI.

Go back to top

# 5.0 Home Menus

## 5.1 Ethernet and PDH/DSn Home Menus

The TX130M+ is able to record Ethernet and PDH/DSn measurements. The two modes are featured on separate home menus. To toggle between Ethernet and PDH/DSn modes, press the **MODE** key. Either Home Menu can be accessed at anytime during operation by pressing the **Home** key on the rubber keypad.

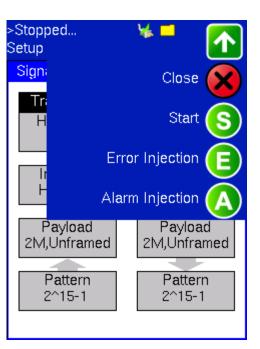


### Menu A features Ethernet, SyncE, 1588v2, and Common Functions.

The upper part of Menu A contains items specific to the test application of the handheld test set, while the lower part of the menu contains items common to all VeEX VePAL handheld test sets.

Menu B features PDH and DSn test functions.

Some items are optional, and require the purchase of a software option in order to be activated. Some items have not been released, and will become available in future software releases.


### Go back to top

## 5.2 Action Menu (Menu B only)

In Menu B, tapping the green arrow access the Action Menu, which displays the following menu selections:

- Close Closes the Actions menu
- Start Starts measurements and brings up the Results screen.
- **Stop** Stops measurements
- Error/Alarm Injection

### **Action Menu**





# 6.0 Menu A - Ethernet/SyncE/1588v2/Common Features Setup

Test ports and network settings are required prior to performing any measurements or applications.

# 6.1 Port Setup

Port setup of the test interface configurations are accessed via the Setup menu located on the Home page. The user selects the operation mode and the interfaces that will be used to carry out tests. The available selections are as follows:

- Port Selection 10/100/1000T or 100/1000Base-X
- Auto Neg On or Off. Matches the test set's negotiation settings to those of the link partner.
  - Off Enables access Speed and Duplex.
  - **On** Enables Advertisement
    - **Advertisement** Default-All or User Defined. Choosing User Defined brings up the Auto Neg. Advertisements screen
- **Speed** Only available when auto-negotiation is off. Select from 10Mbps or 100Mbps on the 10/100/1000/T port and 100Mbps or 1000Mbps when the 100/1000Base-X port is selected.
- **Duplex** Only available when auto-negotiation is off for the 10/100/1000T port. Select from half or full duplex modes. Full is chosen as default when 100/1000Base-X is selected.
- Flow control On or Off. Once the operating mode and interfaces are selected, the user can independently configure the auto-negotiation, speed, duplex, and flow control settings for each port (where applicable).
  - When flow control is enabled, the test set will respond to pause frames received by the link partner by adjusting the transmit rate.
  - When flow control is disabled, the test set ignores all incoming pause frames from the link partner and continues transmitting at the configured transmit rate

Port Setup - 10/100/1000T - Auto-Neg ON

Port Setup - 10/100/1000T - Auto-Neg OFF

| Port          | Profile | es              | Measuren | nent |
|---------------|---------|-----------------|----------|------|
| Set           | up      |                 | Status   |      |
| Port Sele     | ction   | 10/1            | 00/1000T | V    |
| Auto-Neg      | 1       | On              |          | V    |
| Advertisement |         | Default-ALL 🛛 🔻 |          |      |
| Flow Control  |         | Both On 🛛 🔻 🔻   |          |      |
| MDIX          |         | Off             |          | ▼    |
|               |         |                 |          |      |
|               |         |                 |          |      |
|               |         |                 |          |      |

| Link Down<br>Setup | (      | D 🎺            | ` <mark>-</mark> ( | X |  |
|--------------------|--------|----------------|--------------------|---|--|
| Port               | Profil | es             | nent               |   |  |
| Set                | up     | Status         |                    |   |  |
| Port Selection     |        | 10/100/1000T 🔻 |                    |   |  |
| Auto-Neg           |        | Off 🛛 🔻        |                    |   |  |
| Speed              |        | 100Mbps 🛛 🔻    |                    |   |  |
| Duplex             |        | Full 🔻         |                    |   |  |
| Flow Control       |        | Both           | i On               | ▼ |  |
| MDIX               |        | Auto           | )                  | ▼ |  |
|                    |        |                |                    |   |  |

# Advertisement - User Defined

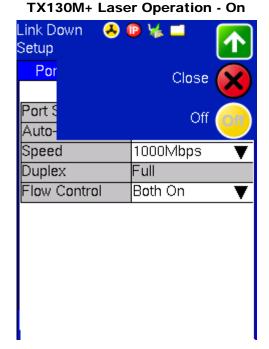


# Port Setup - 100/1000BaseX

| Link Down<br>Setup | 8       | D 🚧  | - 🗸          |  |  |
|--------------------|---------|------|--------------|--|--|
| Port               | Profile | es   | Measurement  |  |  |
| Set                | up      |      | Status       |  |  |
| Port Selec         | ction   | 100/ | '1000Base- 🔻 |  |  |
| Auto-Neg           |         | Öff  | ▼            |  |  |
| Speed              |         | 1001 | Vbps 🛛 🔻     |  |  |
| Duplex             |         | Full |              |  |  |
| Flow Con           | trol    | Both | i On 🛛 🔻 🔻   |  |  |
|                    |         |      |              |  |  |

### Go back to top

# 6.2 Port Status (10/100/1000T only)


Copper Port Status (Page 1) Copper Port Status (Page 2) Copper Port Status (Page 3)

| Up-1000T F 🛛 😰<br>Setup | 😣           | Up-1000T<br>Setup | F 🖸       | 😣                    | Up-1000 <sup>°</sup><br>Setup | TF 🕕       | 😣              |
|-------------------------|-------------|-------------------|-----------|----------------------|-------------------------------|------------|----------------|
| Port Profiles           | Measurement | Port              | Profiles  | s Measurement        | Port                          | Profile    | s Measurement  |
| Setup                   | Status      | Set               | up        | Status               | Se                            | etup       | Status         |
| MX100 Port              |             | Link Adve         | ertisemen | ts Av <b>ailable</b> | MX100.                        | Advertiser | m <b>en</b> ts |
| Link Advertisement      | Done        | 10Mbps/           | Half      | YES                  | 10Mbps                        | /Half      | YES            |
| Link Config. ACK        | YES         | 10Mbps/           | Full      | YES                  | 10Mbps                        | /Full      | YES            |
| Link Up Speed           | 1000Mbps    | 100Mbps           | /Half     | YES                  | 100Mbp                        | s/Half     | YES            |
| Link Up Duplex          | Full        | 100Mbps           | /Full     | YES                  | 100Mbp                        | s/Full     | YES            |
| Link Partner Port       |             | 1000Mbp           | s/Half    | NO                   | 1000Mb                        | ps/Half    | NO             |
| Link Up Speed           | 1000Mbps    | 1000Mbp           | s/Full    | YES                  | 1000Mb                        | ps/Full    | YES            |
| Link Up Duplex          | Full        |                   |           |                      |                               |            |                |
|                         |             | Remote F          | ault      | NO                   |                               |            |                |
| Page 1                  | of 3 💿      | ۲                 | Page      | 2 of 3 💿             | ٩                             | Page       | 3of3 💿         |
| Auto-Neg.               | Re-Start    |                   | Auto-Neg  | . Re-Start           |                               | Auto-Neo   | . Re-Start     |

# 6.3 Laser Activation

- LASER On/Off Operation When the 100/1000Base-X ports is/are selected, the top pull down menu appears in the Setup/Port screen. From this pull down menu the user is able turn the LASER on or off.
  - The LASER may also be turned on/off from any of the following application menus;
    - BERT, RFC 2544, Throughput, Loopback, and IP.

| • 🔶 🚺         |
|---------------|
| Close 🔀       |
| On 💿          |
| 100Mbps 🛛 🔻   |
| Full          |
| Both On 🛛 🔻 🔻 |
|               |
|               |



# TX130M+ Laser Operation - Off

### Go back to top

### **6.4 Profiles**

### **Profiles Tab:**

Previously stored profiles can be viewed, deleted and loaded from this screen. When the user loads a profile, the screen will change automatically to the application that the profile corresponds to.

| Link Down<br>Setup | (         | D 😽   |      |       | 8    |
|--------------------|-----------|-------|------|-------|------|
| Port               | Profil    | es    | Meas | surem | ient |
| Name:              | Τ         | ype:  | C    | )ate: |      |
| 🗂 alt prof         | ïle be    | ert   | 1    | 0/20/ | 11   |
| 🗂 TsLat.t          | xt 19     | 588v2 | 2 1  | 0/19/ | 11   |
| 🗂 UcMst            | Tbl.tx19  | 588v2 | 2 1  | 0/19/ | 11   |
| ClockR             | cvr.t 19  | 588v2 | 2 1  | 0/19/ | 11   |
| 🗂 Config.          | txt 19    | 588v2 | 2 1  | 0/19/ | 11   |
| 💼 FilterCi         | fg.txt 19 | 588v2 | 2 1  | 0/19/ | 11   |
|                    |           |       |      |       |      |
|                    |           |       |      |       |      |
|                    |           |       |      |       |      |
| View Loa           | ad Del    | Ren   | ame  | Un/L  | ock  |



# GENERAL

Test: Layer 3 VLAN: 0 Tag MPLS: 0 Tag

# HEADER

MAC Source: 00-18-63-00-00-6F MAC Dest: 00-18-63-CC-BB-AA Ethernet Type:0800-IP

🗿 Page 1 of 3 💽

### Go back to top

# 6.5 Measurement Settings

### Measurement Tab:

The measurement and event log settings are configured in this screen.

- **Mode:** Manual, timed, or auto mode are available.
  - Manual User starts and stops the measurements manually.
  - **Timed** User defines the duration of the test; after the test is started, the test will run for the configured duration and stop automatically.
  - Auto User configures the start and end time of the test, selects the type of test to run, and a profile if one has been previously stored.

The test set must be powered on to carry out and automatic test.

• TestType (Auto Test only) - BERT, Throughput, or RFC 2544.

### Measurement Settings -Auto Test - BERT & Throughput

|                      | 51                 |
|----------------------|--------------------|
| Link Down 🛛<br>Setup | • • * • 🛃          |
| Port Pro             | ofiles Measurement |
| Mode                 | Auto Test 🛛 🔻 🔻    |
| Start time           | 08: 00             |
| Month                | January 🛛 🔻        |
| Date:                | 01                 |
| End Time             | 09: 00             |
| Month                | January 🛛 🔻        |
| Date:                | 01                 |
| TestType             | BERT 🛛 🔻           |
| Profile              | Current 🛛 🔻        |
| Event Log            | Circular 🛛 🔻       |
| Tx Start             | Coupled            |
| OAM Enable           | On 🗸               |
|                      | _                  |

### Measurement Settings - Auto Test - RFC 2544

| Port      | Pro  | files        |      | uremen |
|-----------|------|--------------|------|--------|
| Mode      |      | Auto 1       | Test |        |
|           |      | 08: 00       |      |        |
| Month     |      | January 🛛 🔻  |      |        |
| Date:     |      | 01           |      |        |
| TestType  |      | RFC 2544 🔹 📢 |      |        |
| Profile   |      | Current      |      | •      |
| Event Log |      | Circular     |      | •      |
| Tx Start  |      | Coupl        | ed   |        |
| OAM Ena   | ıble | On           |      |        |
|           |      |              |      | •      |

### Measurement Settings - Manual

| Link Down<br>Setup | 8    | 0 😰 🤘          |       | ✓      |
|--------------------|------|----------------|-------|--------|
| Port               | Pro  | fil <b>e</b> s | Measu | rement |
| Mode               |      | Manu           | al    | ▼      |
| Event Log          | ]    | Circul         | ar    | •      |
| Tx Start           |      | Coupl          | ed    | •      |
| OAM Ena            | ıble | Off            |       | •      |
|                    |      |                |       |        |
|                    |      |                |       |        |
|                    |      |                |       |        |

| Measure            | emen | t Sett  | ings - Ti | med   |
|--------------------|------|---------|-----------|-------|
| Link Down<br>Setup | 8    | 0       |           | ✔     |
| Port               | Pro  | files   | Measur    | ement |
| Mode               |      | Timed   |           | V     |
| Duration(r         | nin) | 60      |           |       |
| Event Log          |      | Circula | ar        | ▼     |
| Tx Start           |      | Coupl   | ed        | ▼     |
| OAM Ena            | ıble | On      |           | V     |
|                    |      |         |           |       |
|                    |      |         |           |       |
|                    |      |         |           |       |
|                    |      |         |           |       |
|                    |      |         |           |       |

- Event Log: Circular or Blocked. Up to 1000 event logs can be stored.
  - **Circular** only the latest events will be stored if there are over 1000 event logs. The oldest event will be deleted so that the new event can be added.
  - **Blocked** only the maximum number of events will be stored; any event that occurs after the 1000th event will not be stored. Event logs consist of a log of the start of test, end of test, errors, alarms, frame loss, etc. The log will have a timestamp, type of event, and count (number of errors occurring in that instant).
- Tx Start: Coupled or Separate. Configure how the measurements are started when in BERT and Multiple Streams test modes
  - **Coupled** Transmitter and receiver are turned on at the same time, and the Tx and Rx measurements start at the same time at the start of the test.
  - **Separate** independent control (Start/Stop) of the transmitter is enabled. At the start of the test only the receiver is turned on the user must start the transmitter manually.
- OAM Enable: On / Off.
  - When OAM is enabled, the TX130M+ supports the IEEE 802.3ah EFM standard for discovery and loopback control of OAM-enabled devices.

### Go back to top

# **7.0 BERT**

### **Overview**:

BER testing at layer 1, 2, 3, and 4 is supported. The test can be configured to use either regular PRBS patterns, stress patterns or user defined test patterns to simulate various conditions. All patterns are encapsulated into an Ethernet frame to verify bit-perbit performance of the circuit under test.

• Layer 1: Framed mode - Test pattern is encapsulated into a valid Ethernet frame with SOF, Preamble and CRC field.

BERT Setup - Header (Layer 1 Framed)

**Data Patterns** 

| Page 18 of 121 | Page | 18 | of | 121 |
|----------------|------|----|----|-----|
|----------------|------|----|----|-----|

| Link Down 🐵 🦗 💻 🚺<br>BERT        | Link Down<br>BERT                                                                              | 0                                         | ¥ =                                    |                                      |
|----------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|--------------------------------------|
| Setup Results                    |                                                                                                | D <mark>ata P</mark> a                    | atterns                                |                                      |
| Header Traffic Error Inj Control | IP                                                                                             |                                           | R                                      | X Filter                             |
| Profile Default 🔻                | Summary                                                                                        | MA                                        | \C                                     | Data                                 |
| TEST Layer 1 Framed V            | MAC Source<br>MAC Dest.<br>Ethernet Ty<br>IP TOS:Pre<br>Values=000<br>IP TTL:128<br>Fragment C | :00-18-6<br>/pe:0800<br>cedenc<br>00-Norr | 63-CC<br>0-IP<br>:e=000<br>mal Se<br>) | -BB-AA<br>D-Routine,<br>ervice, etc. |
|                                  | OK                                                                                             | AR                                        | P                                      | ARP GW                               |

- Layer 2: Framed BERT (same as Layer 1 Framed)
  - **MAC Address:** A default or user configured Media Access Control (MAC) address is added to the frame. This MAC address is used as the source MAC address for all streams (Throughput Testing mode).

| BERT Setup               | - H  | eader (La      | ayer 2) |
|--------------------------|------|----------------|---------|
| Link Down 🛛 🔮<br>RFC2544 | ) (  | ) 🤘 💻          | ✓       |
| Setup                    |      | Resu           | ults    |
| Thrpt Latend             | cy F | Frm Loss       | Burst   |
| Header Frame             | es T | hreshold       | Control |
| Profile                  | Def  | ault           | ▼       |
| TEST                     | Lay  | er 2           | ▼       |
| Frame Type               | 802  | 3 R <b>a</b> w | ▼       |
| VLAN                     | Off  |                | V       |
|                          |      |                |         |
| MAC                      |      | Data           | CRC     |
|                          |      |                | ٩       |

### BERT Setup - MAC address editing

| Link Down<br>BERT | <b>(</b> ] | ≰ 🗖   | $\otimes$ |
|-------------------|------------|-------|-----------|
| MAC Source        |            |       |           |
| 00-18-63-00-0     | 0-6F       |       |           |
| A                 | В          | C     |           |
| D                 | Е          | F     |           |
| 1                 | 2          | 3     |           |
| 4                 | 5          | 6     |           |
| 7                 | 8          | 9     | ]         |
|                   | 0          |       |           |
| Del DelAL         | .L –       | Apply | <-        |
|                   |            |       |           |

- Layer 3: Framed BERT (same as Layer 1 & 2 Framed)
  - **MAC Address:** A default or user configured Media Access Control (MAC) address is added to the frame. This MAC address is used as the source MAC address for all streams.
  - **IP Address:** A default or user configured IP address is added to the frame. This IP address is used as the source IP address for all streams.

**BERT Setup - Header (Layer 3)** 

| Link Down<br>BERT | • • • •               |
|-------------------|-----------------------|
| Setup             | Results               |
| Header Traffi     | ic Error Inj Control  |
| Profile           | Default 🛛 🔻           |
| TEST              | Layer 3 🛛 🔻 🔻         |
| Frame Type        | Ethernet II (DIX) 🛛 🔻 |
| VLAN              | Off 🛛 🔻               |
| MPLS              | Off 🛛 🔻               |
| MAC IP            | Data C<br>R<br>C      |
|                   | 2                     |

- Layer 4: Framed BERT (same as Layer 1, 2 & 3 Framed)
  - **MAC Address:** A default or user configured Media Access Control (MAC) address is added to the frame. This MAC address is used as the source MAC address for all streams.
  - **IP Address:** A default or user configured IP address is added to the frame. This IP address is used as the source IP address for all streams.
  - **UDP/TCP:** A user defined source and destination port address is added to the frame.

# BERT Setup - Header (Layer 4)

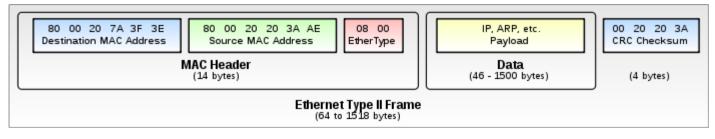
| Link Down<br>BERT | · • ¥ - 📃              | •   |
|-------------------|------------------------|-----|
| Setup             | Results                |     |
| Header Traffi     | ic Error Inj Conti     | rol |
| Profile           | Default 🛛              | 7   |
| TEST              | Layer 4 🛛 🖪            | 7   |
| VLAN              | Off 🛛                  | 7   |
| MPLS              | Off 🔹                  | 7   |
| PROTOCOL          | UDP T                  |     |
| MAC IP            | U Data C<br>D R<br>P C |     |
|                   | ٩                      |     |

# BERT Setup - Header (Layer 4) UDP Settings

| Link Down<br>BERT | 0 😼  | •         |  |  |  |  |
|-------------------|------|-----------|--|--|--|--|
| Data Patterns     |      |           |  |  |  |  |
| Summary           | MAC  | Data      |  |  |  |  |
| IP                | UDP  | RX Filter |  |  |  |  |
| Source Port       | 8001 |           |  |  |  |  |
| Dest Port         | 8000 |           |  |  |  |  |
|                   |      |           |  |  |  |  |
| ОК                | ARP  | ARP GW    |  |  |  |  |

# Go back to top

# 7.1 BERT Setup


The test layer, frame header, traffic profile, error injection, and control settings of the far end device (if applicable) must be configured prior to testing.

# 7.1.1 Header Settings

• **BERT Profile:** Load a previously configured test profile or create a new profile from existing settings. See <u>Profiles</u> for more details on how to create new profiles.

- Test: Select the test layer to perform the BERT.
  - Options are Layer 1 Framed, Layer 2, Layer 3, and Layer 4.
- Frame Type: Select the Ethernet frame type for Layer 2 or Layer 3.
  - 802.3 Raw (IEEE 802.3 frame without LLC) Not available when Layer 3 is selected
  - Ethernet II (DIX) (named after DEC, Intel, and Xerox, this is the most common frame type today)
- MAC/IP: Tap the MAC and IP blocks on the Frame image to access the setup menus
  - Set the Source and Destination MAC address for Layer 2
  - Set the Source and Destination MAC and IP addresses for Layer 3
- VLAN: Off, 1 tag, 2 tags, 3 tags.
  - The user is able to configure up to 3 VLAN tags (VLAN stacking, for Q-in-Q applications)
     Note: VLAN stacking is an option.
- MPLS: Off, 1 tag, 2 tags, 3 tags.
  - The user is able to configure up to 3 MPLS tags.
    - Note: MPLS tag configuration is only available when the MPLS option is purchased.

# The most common Ethernet Frame format, Type II

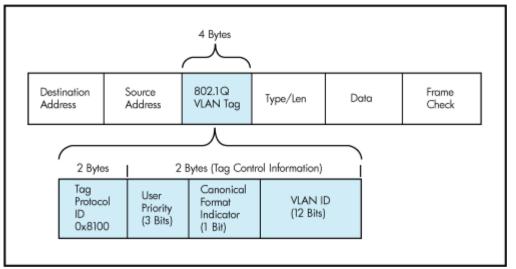


### Go back to top

## MAC, VLAN, MPLS, IP, and Test Pattern Configurations:

To configure the MAC addresses, IP addresses, VLAN tags, MPLS tags, and test pattern, tap on the frame image displayed on the screen. This brings you to the configuration screens for all the header fields. Alternately, tap on the magnifying glass at the bottom right corner to access the configuration screens.

- MAC Header Tab:
  - MAC Source Use the default source address of the test set or configure a new or different address.
  - MAC Destination Configure the destination MAC address of the far end partner test set.
  - Ethernet Type For Layer 3 testing, the user can also configure the Ethernet type;
    - 0800-IP (Internet Protocol Version 4, IPv4)
      - 0600-Xerox
      - 0801-X.75 (X.75 Internet)
      - 0805-X.25 (X.25 Level 3)
      - 0806-ARP (Address Resolution Protocol (ARP))
      - 8035-RARP (Reverse Address Resolution Protocol (RARP))
      - 8137-IPX (Novell IPX)
      - 814C-SNMP
      - 8847-MPLS unicast
      - 8848-MPLS multicast
      - 86DD (Internet Protocol, Version 6 (IPv6)) Future Release


### BERT Setup - MAC Address Settings (Layer 3)

BERT Setup - Ethertype Settings (Layer 3)

| Down          | • • •             |
|---------------|-------------------|
| Dat           | a Patterns        |
| IP            | RX Filter         |
| Summary       | MAC Data          |
| AC Source     | 00-18-63-00-00-6F |
| AC Dest.      | 00-18-63-CC-BB-A  |
|               | 0800-IP           |
| Ethernet Type |                   |
|               |                   |
|               |                   |
|               |                   |
|               |                   |
|               |                   |
| Defa          | ault MAC Src      |
| ОК            | ARP ARP GW        |

- VLAN Tab: In the VLAN tab the following parameters are configured;
  - VLAN ID: Can be configured in the range 1 to 4094
    - VLAN ID is the identification of the VLAN, which is basically used by the standard 802.1Q.
    - It has 12 bits which allows the identification of 4096 (2<sup>12</sup>) VLANs.
    - Of the 4096 possible VIDs, a VID of 0 is used to identify priority frames and value 4095 (FFF) is reserved
    - Maximum possible VLAN configurations are therefore set to 4094
  - VLAN Priority: Can be configured in the range 0 to 7
    - Set by the Priority Code Point (PCP), a 3-bit field which refers to the IEEE 802.1p priority.
    - It indicates the frame priority level from 0 (lowest) to 7 (highest), which can be used to prioritize different classes of traffic (voice, video, data, etc)
  - Type: The following selections are possible;
    - 8100 (IEEE 802.1Q tagged frame)
      - 88a8 (IEEE 802.1ad Provider Bridging)

### IEEE 802.1Q VLAN Tag in an Ethernet Frame



**BERT Setup - VLAN Tag Configuration** 

### **BERT Setup - VLAN Tag Summary**

| Page 22 of 121 |
|----------------|
|----------------|

| Link Down<br>BERT    |             | 0 🤸    |       | ✓           |
|----------------------|-------------|--------|-------|-------------|
| Setup                |             |        | Resi  | ults        |
| Header Tra           | affic       | Error  | Inj   | Control     |
| Profile              | De          | efault |       | ▼           |
| TEST                 | La          | iyer 2 |       | ▼           |
| Frame Type           | e Et        | hernet | II (D | IX) 🔻       |
| VLAN                 | 21          | tags   |       | ▼           |
|                      |             |        |       |             |
| MAC V<br>L<br>A<br>N | L<br>A<br>N | D      | ata   | C<br>R<br>C |
|                      |             |        |       | ٩           |

| Link D <mark>o</mark> w<br>BERT | n            | 0  | ¥ <mark>-</mark> |               | $\mathbf{V}$ |
|---------------------------------|--------------|----|------------------|---------------|--------------|
|                                 | Data         | Pa | atterns          |               |              |
| Summa                           | ry 👘         | MA | \C               | Dat           | ta           |
| VL                              | AN .         |    | R                | X Filter      | -            |
| VLAN #1                         | 1            |    |                  |               |              |
| ID 1                            | Priorit      | 7  | Туре             | 8100          | V            |
| VLAN #2                         | 2<br>Priorit | 7  | Туре             | 88 <b>a</b> 8 | •            |
| Drop 8                          | Eliaible     |    |                  |               | -            |
| - 0.00                          |              |    |                  |               |              |
|                                 |              |    |                  |               |              |
|                                 |              |    |                  |               |              |
|                                 |              | Oł |                  |               |              |

- MPLS Tab: In the MPLS tab the following parameters are configured;
  - **MPLS label:** Can be configured in the range 16 through 1,048,575 (labels 0 to 15 are reserved) Note: Composed of 20 bits which allows for the creation of over one million labels.
  - CoS: Can be configured in the range 0 to 7 Note: This field is three bits in length and maps directly to IP Precedence TOS bits to provide Class of Service (COS).
  - S-bit: Can be configured 0 or 1
     Note; The S field is one bit in length and is used for stacking labels. This is important as it is used to indicate the last label in the label stack.
  - **TTL:** Can be configured in the range 0 to 255. The default setting is 128 hops Note: Used to decrement the time-to-live counter.

| Link Down<br>BERT                    | • • •                |
|--------------------------------------|----------------------|
| Setup                                | Results              |
| Header Traff                         | ic Error Inj Control |
| Profile                              | Default 🛛 🔻          |
| TEST                                 | Layer 3 🛛 🔻 🔻        |
| Frame Type                           | Ethernet II (DIX) 🔻  |
| VLAN                                 | 2 tags 🛛 💙           |
| MPLS                                 | 1 tag 🛛 🔍 🗸          |
| MAC V V M<br>L L P<br>A A L<br>N N S | IP Data C<br>R<br>C  |
|                                      | ٩                    |

### BERT Setup - Header with MPLS Label

# BERT Setup - MPLS Label Summary

| Link Dowr<br>BERT | ۱   | (     | <b>6</b> |     | ↓        |
|-------------------|-----|-------|----------|-----|----------|
|                   | Da  | ata P | attern   | s   |          |
| Summar            | У   | M     | AC       |     | Data     |
| VLAN              | MF  | ĽS    | IF       | )   | RX Filte |
| MPLS #            | Lab | el=   | 0        | 2   | S= 1     |
| 1                 | CoS | i=    | 0        | TTĹ | .= 128   |
|                   |     |       |          |     |          |
| OK                |     | A     | RP       | AR  | PGW      |

### Go back to top

- **IP Tab:** In the IP tab the user must configure the destination IP address and source address. The user may also configure the following IP header fields:
  - IP TOS (for Quality of Service testing):

- Legacy TOS (Precedence) The first three bits of the IP TOS field can be edited;
  - 000 Routine
  - 001 Priority
  - 010 Immediate
  - 011 Flash
  - 100 Flash Override
  - 101 Critical
  - 110 Internetwork Control
  - 111 Network Control
- DSCP (Differentiated Services Code Point) The first six bits of the IP TOS can be edited to provide more granular service classification.
  - For more information on the definition of DSCP field in IPv4 and IPv6 headers, refer to RFC2474
- Time To Live (TTL): Can be configured in the range 0 to 255
- Fragment offset byte: Can be configured in the range 0 to 65.528 Note: The fragment offset field, measured in units of eight-byte blocks, is 13 bits long and specifies the offset of a particular fragment relative to the beginning of the original unfragmented IP datagram.
- Protocol: UDP (0x11), TCP (0x06), or User defined

# BERT Setup - IP Settings (DSCP)

|              | Data  | Pat            | tte | erns |      | <u> </u> | -  |
|--------------|-------|----------------|-----|------|------|----------|----|
| Summary      |       | MA             | С   |      | Data |          |    |
| VLAN N       | /IPL: | S -            |     | IP   | R    | X Fil    | te |
| ІР Туре      |       | IΡv            | 4   |      |      | ٦        | 7  |
| IP Src Addr  |       | 192.           | 1   | 68.0 | 10   |          |    |
| IP Dest Add  | ۶r    | 192.168.2.200  |     |      |      |          |    |
| IP TOS       |       | DSCP 🔻         |     |      |      |          |    |
| DSCP 000     | 000   | ECT            | -   | ΟV   | CE   | 0        | 7  |
| TTL          |       | 128            |     |      |      | _        |    |
| Frag. Offset | :     | 0              |     |      |      |          |    |
| Protocol     |       | UDP - 0x11 🛛 🔻 |     |      |      |          |    |
|              |       |                |     |      |      |          |    |

# BERT Setup - IP Settings (Legacy TOS)

| Link Down<br>BERT | (     | 9 🤸 🛯           |      | ✓         |  |  |
|-------------------|-------|-----------------|------|-----------|--|--|
| C                 | ata P | atterns         | 3    |           |  |  |
| Summary           | M     | AC              |      | Data      |  |  |
| VLAN M            | PLS   | IP              |      | RX Filter |  |  |
| ІР Туре           | IF    | <b>'</b> v4     |      | ▼         |  |  |
| IP Src Addr       | 19    | 2.168.0         | 0.10 | ) [       |  |  |
| IP Dest Add       | r 19  | 192.168.2.200   |      |           |  |  |
| IP TOS            | Le    | Legacy TOS 🛛 🔻  |      |           |  |  |
| Precedence        | 00    | 000-Routine 🛛 🔻 |      |           |  |  |
| TOS Values        | 00    | 0000-Normal 🛛 🔻 |      |           |  |  |
| TTL               | 12    | :8              |      |           |  |  |
| Frag. Offset      | 0     |                 |      |           |  |  |
| Protocol          | U     | DP - Ox         | 11   | V         |  |  |
| OK                |       |                 |      |           |  |  |

### Go back to top

• **Data Tab:** User selects a test pattern that will be encapsulated in the Ethernet frame payload (for framed mode). Depending on the test layer, different test pattern options are available;

### • Layer 1 test patterns


- **CRPAT** Compliant Random Pattern provides broad spectral content and minimal peaking for the measurement of jitter at component or system level.
- CJTPAT Compliant Jitter Test Pattern is a Jitter Tolerance Pattern that stresses a receiver by exposing it to extreme phase jumps thereby stressing the Clock Data Recovery (CDR) circuitry. The pattern alternates between repeating low transition density patterns and repeating high transition density patterns.
   CSPAT
- CSPAT

# BERT Setup - Test Pattern (Layer 1 Framed)

| Link Down<br>BERT | 🕑 🧏 🗖             | ✓ |
|-------------------|-------------------|---|
| Head              | ler Configuration |   |
|                   |                   |   |
| CRPAT             |                   |   |
| ○ CJPAT           |                   |   |
| ○ CSPAT           |                   |   |
|                   |                   |   |
|                   |                   |   |
|                   |                   |   |
|                   |                   |   |
|                   | OK                |   |

- Layer 2 & 3 test patterns
  - PRBS:
    - 2<sup>31</sup> -1 (147 483 647-bit pattern used for special measurement tasks, e.g. delay measurements at higher bit rates)
    - 2<sup>2</sup>3 -1 (8 388 607-bit pattern primarily intended for error and jitter measurements at bit rates of 34 368 and 139 264kbit/s)
    - 2<sup>15</sup> -1 (32 767-bit pattern primarily intended for error and jitter measurements at bit rates of 1544, 2048, 6312, 8448, 32 064 and 44 736kbit/s
    - 2<sup>11</sup> -1 (2047-bit pattern primarily intended for error and jitter measurements on circuits operating at bit rates of 64kbit/s and N 64kbit/s)
  - Fixed: All 0s or All 1s
  - User Defined pattern: Length depends on size of frame
  - Inversion: Normal or inverted

### BERT Setup - PRBS Patterns



### Go back to top

• RX Filter Tab: Allows the user to filter incoming streams by:

- MAC Destination address
- MAC Source address
- VLAN ID
- IP Destination address
- IP Source address

# **BERT Setup - RX Filter Selection**

| Link Dowr<br>BERT |               | • • • • • • • • • • • • • • • • • • • |     |      |           |  |  |
|-------------------|---------------|---------------------------------------|-----|------|-----------|--|--|
| Data Patterns     |               |                                       |     |      |           |  |  |
| Summar            | У             | MAC                                   |     |      | Data      |  |  |
| VLAN              | IP            |                                       | UDF | 2    | RX Filter |  |  |
| □ MAC [           | )est          |                                       | IP  | Des  | st        |  |  |
| □ MAC S           | Source        | e 🗆                                   | IP  | Sou  | irce      |  |  |
| VLAN              | ID            |                                       | De  | st F | ort       |  |  |
| VLAN              | Priorit       | y 🗖                                   | So  | urc  | e Port    |  |  |
| 🗖 VLAN            | Eligibl       | е                                     |     |      |           |  |  |
| 🗖 Frame           | Туре          |                                       |     |      |           |  |  |
| 🗖 Туре о          | f Serv        | ice                                   |     |      |           |  |  |
| Protoc            | Protocol Type |                                       |     |      |           |  |  |
| 🗖 Remote          | e Loop        | o Filte                               | r   |      |           |  |  |
| ОК                |               | ARP                                   |     | AR   | P GW      |  |  |

| BERT Setup - UDP/TCP |      |       |      |          |
|----------------------|------|-------|------|----------|
| Link Down<br>BERT    |      | •     |      | .↓       |
| [                    | Data | Patte | erns |          |
| Summary              |      | MAC   |      | Data     |
| VLAN                 | IP   | l     | JDP  | RX Filte |
| Source Port          |      | 8001  |      |          |
| Dest Port            |      | 8000  |      |          |
| Dubber off           |      | 0000  |      |          |
|                      |      |       |      |          |
|                      |      |       |      |          |
|                      |      |       |      |          |
|                      |      |       |      |          |
|                      |      |       |      |          |
|                      |      |       |      |          |
| ОК                   |      |       |      | RP GW    |

• UDP/TCP: Input Source Port and Destination Port.

### Go back to top

### 7.1.2 Traffic Settings

### Traffic tab:

The user configures the traffic profile for the stream, including traffic flow, frame size, frame type, and transmit rate.

- Traffic Flow: Select from the following traffic flows:
  - Constant the selected frame is transmitted continuously according to the selected bandwidth %.
  - Ramp the selected frame is transmitted at maximum bandwidth according to the selected duty cycle and burst period.
  - Burst the selected frame is transmitted in a stair case profile according to user selectable step time, number of steps, and maximum bandwidth
  - Single Burst
- Frame Size: Enter the frame size when a Layer 2 or Layer 3 BERT is selected.
  - Frame size configuration is not available for Layer 1 BERT.
  - Frame sizes can be from 64 bytes to 1518 bytes, in addition to jumbo frames up to 9000 bytes.
- BW (Transmit Bandwidth): Configure the transmit rate for the test.
  - When traffic flow is equal to Burst, two burst bandwidths are configured with burst time.
    - When traffic flow is equal to Ramp, starting and an ending bandwidth are configured along with the bandwidth step size and duration.

BERT Setup - Layer 1 Constant Traffic

# BERT Setup - Layer 2 & 3 Burst Traffic

| Link Down<br>BERT | 🔍 🖗 🐂 🚺                       | ✓      | Link Down<br>BERT | 🕑 🧏 🗖                        |
|-------------------|-------------------------------|--------|-------------------|------------------------------|
| Setup             | Results                       |        | Setup             | Result                       |
| Header Traf       | <mark>fic</mark> Error Inj Co | ontrol | Header Traf       | <mark>fic</mark> Error Inj C |
| Traffic Flow      | Constant                      | ▼      | Traffic Flow      | Burst                        |
| Frame Size        | Fixed                         | V      | Frame Size        | 1518                         |
| Frame Size        | 1518                          |        | Burst 1 BW        | 75.00 %                      |
| Const BW          | 100.00 %                      | V      | Burst 1 Time      | 5 ms                         |
|                   |                               |        | Burst 2 BW        | 100.00 %                     |
|                   |                               |        | Burst 2 Time      | 5 ms                         |
| B <u>W%</u>       | 100.00%                       |        | BW%<br>75%<br>ms  | 100%<br>ms                   |
|                   | t                             | time   |                   |                              |



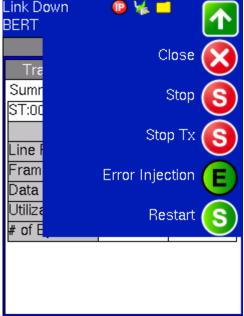
# **Frame Size Limitations**

Layer 1 framed mode - Frame size configuration is not available. Layer 1 unframed mode - Traffic profile is constant at 100% bandwidth.

### Go back to top

### 7.1.3 Error Injection

Error injection can only be performed during testing. The error type and injection rate are configured in the Error Injection tab.


- Error type: Select from Bit, CRC, Bit and CRC, IP Checksum (layer 3 only), TCP/UDP Checksum (layer 4 only), or Pause.
- Injection Flow: Determines how the selected errors will be injected.
  - Select a single error injection, specific count, or error rate.
- Rate and Count: Configures the error rate and error count via the numeric pop-up keypad


Once the test is running, error injection is enabled by selecting the "Error Injection" icon from the action pull down menu at the top of the screen. Press the "error inject" button to injecting error at the predetermined settings.

### **BERT - Error Injection Setup**

**BERT - Error Injection Action Menu** 

| Header Traffic<br>Error Type | Error Inj | Control |  |
|------------------------------|-----------|---------|--|
| Error Type                   |           | Control |  |
|                              | CRC       | ▼       |  |
| Injection Flow               | Count     | ▼       |  |
| Count                        | 1000      |         |  |
|                              |           |         |  |
|                              |           |         |  |
|                              |           |         |  |
|                              |           |         |  |
|                              |           |         |  |
|                              |           |         |  |
|                              |           |         |  |
|                              |           |         |  |
|                              |           |         |  |



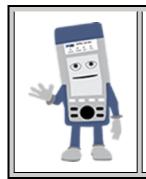


# **Error Injection**

Once a test is running, error injection can be enabled by selecting the "Error Injection" icon from the action pull-down menu at the top of the screen. Press the "Error Injection" button to start injecting errors.

### Go back to top

### 7.1.4 Control Settings


In the Control settings tab, the user configures the loop-up and loop-down commands necessary to control a far end unit. Looping back test traffic is possible as follows:

- Layer 1: All incoming traffic is looped back unchanged.
- Layer 2: All incoming unicast traffic is looped back with the MAC source and destination addresses swapped.
- Layer 3: All incoming unicast traffic is looped back with MAC and IP source and destination addresses swapped.
- Mode Manual or Asymmetric
  - Manual: User must input the destination MAC/IP address of the far end device along with the type of command.
    - IP Destination: Enter the IP address of the far end test set that is to be looped up/down.
      - Prior to starting the test, manually send the loop up command by pressing the Loop Up button
      - A "Loop-up successful" message will appear
      - After completing the test, manually send a loop down command by pressing the Loop Down button

### **BERT - Control Setup (Manual)**

**BERT - Device Discovery** 





# **MX Discover Feature**


- If the local and remote test sets are on the same IP subnet, the MX Discover feature can be used
- Automatically discover the far end test unit by pressing the Discover button
- Once discovered, select the remote unit and send a loop up command
- No manual configuration of the IP address is needed, since these are populated automatically

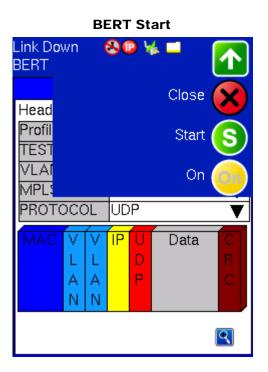
### Go back to top

• Asymmetric Mode: No configuration is necessary.

### **BERT - Control Setup (Asymmetric)**

| Up-1000X<br>BERT                                                        | F 🐣               | 🖌 🗖 🖗     | <u> </u> |  |
|-------------------------------------------------------------------------|-------------------|-----------|----------|--|
| Seti                                                                    | lb                | Res       | ults     |  |
| Header 7                                                                | Fraffic           | Error Inj | Control  |  |
| MX Dis                                                                  | cover             | OAM D     | iscover  |  |
| Mode                                                                    | Peer-to-          | -Peer     | ▼        |  |
| IP Dest                                                                 | 192.168           | .1.10     |          |  |
| No devices detected<br>Press "Discover" to try to disc<br>over devices. |                   |           |          |  |
|                                                                         | e Setup<br>scover | Remote F  | esults   |  |




# OAM Devices

If OAM is enabled, any link partner that supports the IEEE 802.3ah protocol, will be discovered automatically and be displayed under the "OAM Discover" tab.

### Go back to top

### 7.1.5 Starting/Stopping a BERT

Once all the necessary configurations have been completed, the user can start the test by selecting Start from the top right corner action pull-down menu (green arrow pointing down). Once selected, the test will start immediately and the icon will change to a Stop indication. To stop the test, simply tap the Stop icon. If testing on any of the fiber ports, ensure the LASER is switched ON before starting the test.



### Go back to top

# 7.2 BERT Results

### 7.2.1 Summary

Summary tab: The following results including the Start (ST) and Elapsed (ET) times are displayed:

- Line rate
- Framed rate
- Data rate
- Utilization
- Number of bytes
- Optical power Optical level measured by the SFP or XFP transceiver

### Go back to top

### 7.2.2 Errors

Errors tab: The following Errors (Current and Total) are displayed:

- Bits Indicates errors related to test pattern (Bit Error or LSS (Pattern Loss)).
- BER Bit Error Ratio
- Symbol Declared when an invalid code-group in the transmission code is detected
- FCS/CRC Number of received frames with an invalid FCS
- IP Checksum (Layer 3 only)
- Jabber frames Number of received frames larger than 1518 bytes containing an invalid FCS.
- Runt frames Number of received frames smaller than 64 bytes containing an invalid FCS.
- Giant frames Number of received frames larger than 1522 bytes containing an invalid FCS.

| BERT Results-Running |                 |        |     |        |
|----------------------|-----------------|--------|-----|--------|
| Setup                | Results-Running |        |     |        |
| Traffic              | De              | lay    |     | Rates  |
| Summary E            | Irrors          | Alarm  | าร  | Events |
| ST:17:17:59          |                 | ET:00: | 00: | 23     |
|                      | Тх              |        | Rx  |        |
| Line Rate            | 100             | 0.00M  | 10  | 00.00M |
| Framed Rate          | <b>9</b> 87     | .00M   | 98  | 6.70M  |
| Data Rate            | 944             | .08M   | 94  | 3.57M  |
| Utilization          | 100             | .00%   | 10  | 0.00%  |
| # of Bytes           | 1.07            | 'E+09  | 1.0 | )7E+09 |
|                      |                 |        |     |        |
|                      |                 |        |     |        |
|                      |                 |        |     |        |
|                      |                 |        |     |        |

### **BERT Results - Summary**

| BERT Results - Errors |      |        |      |         |
|-----------------------|------|--------|------|---------|
| Up-1000T F<br>BERT    | e    | ) 💳 🗖  |      | ✓       |
| Setup                 |      | Result | ts-l | Running |
| Traffic               | De   | lay    |      | Rates   |
| Summary Err           | ors  | Alarm  | IS   | Events  |
|                       | Curi | rent   | Πo   | ital    |
| Bits                  | 0    |        | 0    |         |
| BER                   | 0.00 | )E+00  | 0.0  | 00E+00  |
| Symbol                | 0    |        | 0    |         |
| FCS/CRC               | 0    |        | 0    |         |
| FCS/CRC(%)            | 0.00 | )E+00  | 0.0  | 00E+00  |
| IP Checksum           | 0    |        | 0    |         |
| IP chks(%)            | 0.00 | )E+00  | 0.0  | 00E+00  |
| top/udp chks          | 0    |        | 1    |         |
| P                     | age  | 1 of 2 |      | ۲       |

# BERT Results - Errors

### Go back to top

### 7.2.3 Events

Events tab: A time stamped record or log of anomalies, alarms, test status (start/stop) and test application are displayed.

### Go back to top

### 7.2.4 Alarms

Alarms tab: The following Alarms (Current and Total) are displayed:

- LOS Loss of Signal
- LOS Sync
- · Pattern Loss Indicates errors related to test pattern
- Service Disruption:
  - Current
  - Total
  - Min/Max
  - Times

**BERT Results - Events** 

**BERT Results - Alarms** 

| Up-1000T F<br>BERT | <u>(</u> | ) 💳 🗖   |      | ✓       |  |
|--------------------|----------|---------|------|---------|--|
| Setup              | )        | Result  | ts-l | Stopped |  |
| Traffic            | De       | lay     |      | Rates   |  |
| Summary            | Errors   | Alarm   | IS   | Events  |  |
| tim <b>e</b>       | Even     | ts      | η    | FEST    |  |
| 17:19:47           | Test     | Stoppe  | dE   | BERT    |  |
| 17:18:01           | UDP      | Chk Er  | r  1 |         |  |
| 17:17:59           | Test     | Started | E    | BERT    |  |
|                    |          |         | Τ    |         |  |
|                    |          |         | Τ    |         |  |
|                    |          |         |      |         |  |
|                    |          |         |      |         |  |
| Page 1 of 1 O      |          |         |      |         |  |

| Up-1000T F<br>BERT | œ       |                       |          | ✓       |
|--------------------|---------|-----------------------|----------|---------|
| Setup              |         | Resul                 | ts-l     | Running |
| Traffic            | De      | lay                   |          | Rates   |
| Summary E          | Errors  | Alarn                 | าร       | Events  |
|                    | Cur     | rent                  | Πc       | otal    |
| LOS(ms)            | 0       |                       | 0.00E+00 |         |
| LOSync             | N/A     |                       | N/A      |         |
| Pattern Los:       | s 0     | )                     |          |         |
| Service Dis        | sruptio | n (tim <mark>e</mark> | )        |         |
| Current            | Oms     | 3                     |          |         |
| Total              | Oms     | 6                     |          |         |
| Last               | Oms     | 6                     |          |         |
| Min/Max            | Oms     | 6                     | Om       | s       |
| Times              | 0       |                       |          |         |

### 7.2.5 Traffic

Traffic tab: The following Traffic statistics are displayed:

- Frame Type Test and non-test frames
- Traffic type Layer 2 and Layer 3 Unicast, Broadcast and Multicast frame percentage
- Frame size distribution
- Pause frames

Frames tab: The following Frame distribution statistics are displayed in count (#) and percentage (%):

### • Received (RX) frames:

- Total frames
- Test frames
- VLAN tagged frames
- VLAN stacked frames
- MPLS labeled frames
- MPLS stacked frames
- Non-test frame
- Transmitted (TX) frames:
  - Total frame
- Paused frames: Transmitted and Received

BERT Results - Traffic Graph

**BERT Results - Traffic / Frames** 

| Up-1000T<br>BERT   | F     | æ          | ) 🚥 🗖           |                 | ✓      |  |
|--------------------|-------|------------|-----------------|-----------------|--------|--|
| Set                | Setup |            |                 | Results-Running |        |  |
| Summary            | У     | Errors     | Alarm           | າຣ              | Events |  |
| Traffic            |       | De         | lay             |                 | Rates  |  |
| R<br>Frame<br>Type |       | Tes        | t Fram          | es              |        |  |
| Traffic<br>Type    |       | Ur         | ni <b>ca</b> st |                 |        |  |
| Frame<br>Size      |       | 1280-1518B |                 |                 |        |  |
| 0%                 | 6     |            | 50%             |                 | 100%   |  |

| Jp-1000T F<br>BERT<br>Traffi | - 🕞 🖛 🖬      | - 🔽        |
|------------------------------|--------------|------------|
| Frames                       | Traffic Type | Frame Size |
| Rx Frames                    | ; #          | %          |
| Total                        | 5352724      | 100        |
| Test                         | 5352724      | 100        |
| VLAN                         | 0            | 0          |
| Q-in-Q                       | 0            | 0          |
| Non-Test                     | 0            | 0          |
| Tx Frames                    | ; #          |            |
| Total                        | 5240240      |            |
| Pause Fra                    | me Tx        | Rx         |
| Total                        | 0            | 1200       |
|                              | OK           |            |

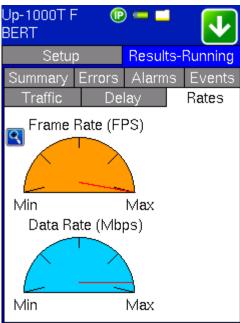
Traffic Type tab: The following Traffic distribution statistics are displayed in Count (#) and Percentage (%):

- Layer 2 Unicast frames Number of Unicast frames received without FCS errors.
- Layer 2 Broadcast frames Number of Broadcast frames received without FCS errors. Broadcast frames have a MAC address equal to FF-FF-FF-FF-FF.
- Layer 2 Multicast frames Number of Multicast frames received without FCS errors.
- Pause frames Number of valid flow-control frames received. Frames having a type/length field equal to 8808h are counted as pause frames.
- Layer 3 Unicast frames Number of Unicast frames received without FCS errors.
- Layer 3 Broadcast frames Number of Broadcast frames received without FCS errors. Broadcast frames have a MAC address equal to FF-FF-FF-FF-FF.
- Layer 3 Multicast frames Number of Multicast frames received without FCS errors.

Frame Size tab: The following Frame distribution statistics are displayed in count (#) and percentage (%):

- < 64 byte frames</p>
- 64-127 byte frames
- 128-255 byte frames
- 256-511 byte frames
- 512-1023 byte frames
- 1024-1279 byte frames
- 1280-1518 byte frames
- > 1518 byte frames Jumbo frames

BERT Results - Traffic Type


**BERT Results - Traffic Frame Size** 

| p-1000T F<br>ERT | (P) 🚥 🗖        | •          |
|------------------|----------------|------------|
| Traffic          | Distribution D | etails     |
| Frames           | Traffic Type 🚺 | Frame Size |
| Distribution     | #              | %          |
| Uni <b>ca</b> st | 7018426        | 98         |
| Broadcast        | 0              | 0          |
| Multicast        | 162001         | 2          |
| Pause            | 162001         | 2          |
|                  |                |            |
|                  |                |            |
|                  |                |            |
|                  |                |            |
|                  |                |            |
|                  | ОК             |            |

### 7.2.6 Rates

Rates tab: Rate statistics are displayed graphically and in tabular format:

- Frame rate in Frames per second (FPS) Number of received frames (including bad frames, Broadcast frames and Multicast frames)
- Data rate in Mbps Received data rate expressed in Mbps.



| Up-1000T F<br>BERT    | (P) 🚥 🗖 | - 🗸    |  |  |  |  |
|-----------------------|---------|--------|--|--|--|--|
| Rate Details          |         |        |  |  |  |  |
| Frames/sec            | Tx      | Rx     |  |  |  |  |
| Current               | 81274   | 83077  |  |  |  |  |
| Minimum               | 59977   | 60619  |  |  |  |  |
| Maximum               | 81275   | 83079  |  |  |  |  |
| Average               | 81075   | 82856  |  |  |  |  |
| Data Rate (Mb/s Tx Rx |         |        |  |  |  |  |
| Current               | 944.08  | 943.57 |  |  |  |  |
| Minimum               | 696.69  | 696.50 |  |  |  |  |
| Maximum               | 944.08  | 943.85 |  |  |  |  |
| Average               | 941.77  | 941.21 |  |  |  |  |
|                       |         |        |  |  |  |  |
|                       |         |        |  |  |  |  |
| OK                    |         |        |  |  |  |  |

**BERT Results - Rates Details** 

### **BERT Results - Rates Graph**

## Go back to top

## 7.2.7 Delay

Delay tab: Frame arrival statistics are displayed in tabular format:

- Current
- Minimum

MaximumVariation (Current)

### **BERT Results - Delay**

| Up-1000T F<br>BERT | •        | ) 💳 🗖           | ✓      |  |  |
|--------------------|----------|-----------------|--------|--|--|
| Setup              | )        | Results-Running |        |  |  |
| Summary            | Errors   | Alarms          | Events |  |  |
| Traffic            | De       | lay             | Rates  |  |  |
| Frm Arriva         | ıl Delay | (               |        |  |  |
| Current            | 0.16 ı   | 0.16 us         |        |  |  |
| Minimum            | 0.16 ı   | 0.16 us         |        |  |  |
| Maximum            | 12.19    | 12.19 ms        |        |  |  |
| Average            | 0.16 ı   | 0.16 us         |        |  |  |
|                    | ∀aria    | Variation       |        |  |  |
| Current            | 0.00 ι   | JS              |        |  |  |
|                    |          |                 |        |  |  |
|                    |          |                 |        |  |  |
|                    |          |                 |        |  |  |
|                    |          |                 |        |  |  |

### Go back to top

### 7.2.8 Saving BERT Results

Once the test is completed, results can be saved by pressing the save function key on the keypad. The results will be saved and named automatically. Once saved, the user can view or rename the files by going to the results folder of the files menu.

### Go back to top

# 8.0 RFC 2544 Conformance Testing

### **Overview**:

Service providers often need to test the end to end performance of the link when deploying Ethernet services to customers. The Internet Engineering Task Force (IETF) RFC 2544 "Benchmarking Methodology for Network Interconnect Devices" defines tests that describe the performance characteristics of a network interconnecting device.

RFC 2544 recommendations are well accepted in the test and measurement industry for network performance testing. The RFC 2544 test suite consists of and performs a set of four automated tests (throughput, latency, frame loss, and burst or back-to-back) to qualify the performance of a network link under test. The tests are especially popular for the verification of network links with certain service level agreements (SLA).

The following settings must be configured prior to RFC 2544 testing;

- Test layer (Layer 1/2/3/4)
- Frame header (MAC, VLAN, MPLS, IP, UDP, and Data)
- Test frames selection
- Pass/fail thresholds (optional)
- Far end unit loop control
- Throughput
- Latency
- Frame loss
- Burst (back-to-back)

### Go back to top

Unless otherwise noted, the Header and related setups are identical to the setups described in the BERT Test Application above. A summary of the RFC 2544 setup options are outlined below.

# 8.1.1 Header Settings

- **BERT Profile:** Load a previously configured test profile or create a new profile from existing settings. See <u>Profiles</u> for more details on how to create new profiles.
- Test: Select the test layer to perform the BERT.
  - Options are Layer 1 Unframed, Layer 1 Framed, Layer 2, and Layer 3.
- Frame Type: Select the Ethernet frame type for Layer 2 or Layer 3.
  - 802.3 Raw (IEEE 802.3 frame without LLC) Not available when Layer 3 is selected
    - 802.3 LLC (IEEE 802.3 frame with LLC header)
    - 802.3 SNAP (IEEE 802.3 frame with SNAP header)
    - Ethernet II (DIX) (named after DEC, Intel, and Xerox, this is the most common frame type today)
- MAC/IP: Tap the MAC and IP blocks on the Frame image to access the setup menus
  - Set the Source and Destination MAC address for Layer 2
  - Set the Source and Destination MAC and IP addresses for Layer 3
- VLAN: Off, 1 tag, 2 tags, 3 tags.
  - The user is able to configure up to 3 VLAN tags (VLAN stacking, for Q-in-Q applications)
    - Note: VLAN stacking is an option.
- MPLS: Off, 1 tag, 2 tags, 3 tags.
  - The user is able to configure up to 3 MPLS tags.

Note: MPLS tag configuration is only available when the MPLS option is purchased.

# MAC, VLAN, MPLS, IP, and Test Pattern Configurations:

Tap on the Frame image displayed on the screen to configure the MAC addresses, IP addresses, VLAN tags, MPLS tags, and test pattern. This brings you to the configuration screens for all the header fields.

| <b>RFC Setup Overview</b> |               |             |             |         |  |  |
|---------------------------|---------------|-------------|-------------|---------|--|--|
| Up-1000T<br>RFC2544       | F             | (           | P 🚧 🗖       | ✓       |  |  |
| Set                       | up 🛛          |             | Res         | Results |  |  |
| Thrpt L                   | Thrpt Latency |             |             | Burst   |  |  |
| Header                    | Fram          | es          | Threshold   | Control |  |  |
| Profile                   |               | Sa          | ive         | ▼       |  |  |
| TEST                      |               | La          | Layer 4 🛛 🔻 |         |  |  |
| VLAN                      |               | Of          | Off 🛛 🔻     |         |  |  |
| MPLS                      |               | Of          | Off 🛛 🔻     |         |  |  |
| PROTOCOL (                |               |             | )P          | ▼       |  |  |
| MAC                       | IP            | U<br>D<br>P | Data        | C R C   |  |  |
|                           |               |             |             | ٩       |  |  |

| Up-1000T F<br>RFC2544                                                                               | œ                                     | ) 🚧 🛛 | • 🗸       |  |  |  |
|-----------------------------------------------------------------------------------------------------|---------------------------------------|-------|-----------|--|--|--|
| Head                                                                                                | Header Configuration                  |       |           |  |  |  |
| UDP                                                                                                 |                                       | F     | RX Filter |  |  |  |
| Summary                                                                                             | - MA                                  | AC 👘  | IP        |  |  |  |
| MAC Sourc<br>MAC Dest.:<br>Ethernet Ty<br>Traffic Clas<br>Flow Label:(<br>Next Heade<br>Hop Limit:0 | 00-18-<br>p <b>e</b> :86D<br>s:0<br>) | 63-C( | C-BB-AA   |  |  |  |
| O P                                                                                                 | age 1                                 | of 2  | ٥         |  |  |  |
| ОК                                                                                                  | AF                                    | ₹P    | ARP GW    |  |  |  |



# **RFC 2544 Parameter Summary**

Once setup parameters are completed, tapping the zoom function at the bottom right hand side of the screen displays a summary of all settings

### **RFC Setup Summary**

- Go back to top
  - MAC Header Tab:
    - **MAC Source -** Use the default source address of the test set or configure a new or different address. See MAC address editing screen shot below.
    - **MAC Destination** Configure the destination MAC address of the far end partner test set. See MAC address editing screen shot below.
    - Ethernet Type For Layer 3 testing, the user can also configure the Ethertype:
      - 0800-IP (Internet Protocol Version 4, IPv4)
      - 0600-Xerox
      - 0801-X.75 (X.75 Internet)
      - 0805-X.25 (X.25 Level 3)
      - 0806-ARP (Address Resolution Protocol (ARP))
      - 8035-RARP (Reverse Address Resolution Protocol (RARP))
      - 8137-IPX (Novell IPX)
      - 814C-SNMP
      - 8847-MPLS unicast
      - 8848-MPLS multicast
      - 86DD (Internet Protocol, Version 6 (IPv6)) Future Release
  - Data Tab: No payload selection is possible.
  - The payload area is populated with a VeEX signature field and other proprietary data.
  - RX Filter Tab: Depending on test layer, allows the user to filter streams by;
    - MAC Destination address
    - MAC Source address
    - VLAN ID
    - IP Destination address
    - IP Source address
  - VLAN Tab: VLAN ID, priority, and Tag Type (Ethernet Type) can be configured. Please refer to the BERT application for more details.
  - **MPLS Tab:** MPLS label, CoS priority settings, TTL, and S-bit fields are configured for available MPLS tags. Please refer to the BERT application for more details.
  - IP Tab: User configures the source and destination IP addresses The user can also configure the following IP header fields; IP TOS (for quality of service testing), TTL, fragment offset byte, and the protocol field. Please refer to the BERT application for more details.



# **RFC 2544 Header Setups**

The MAC, VLAN, MPLS, and IP configuration procedures are the same as in BERT mode Please refer to the BERT Application section for details.

### Go back to top

### 8.1.2 Frame Settings

Frames tab: User Configures;

- Preset Frames: User selects from a list of recommended test frame sizes defined in RFC 2544:
  - Test frames are 64, 128, 256, 512, 1024, 1280, and 1518 bytes.
  - The default selected frames are 64 and 1518 bytes.
  - To select/deselect any of the recommended test frames, check the box to the right of the desired frame.
- Add frame: The user can add two additional user configurable test frames of any size ranging from 64 bytes to 9000 bytes.
  - To add additional test frames, tap the 'Add Frame' button.

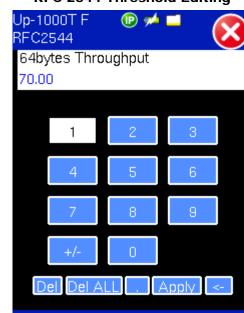
- $\circ\;$  Enter the frame size using the numeric keypad and click apply.
- Press the back button to return to the frames screen.
- The new custom frame size is displayed it can be enabled or disabled as needed.

# RFC 2544 Setup - Frame Settings

| Up-1000T F<br>RFC2544 | • • •             |
|-----------------------|-------------------|
| Setup                 | Results-Running   |
| Thrpt Latency         | Frm Loss Burst    |
| Header Frames         | Threshold Control |
| 64bytes               |                   |
| 128bytes              | $\checkmark$      |
| 256bytes              |                   |
| 512bytes              | $\checkmark$      |
| 1024bytes             |                   |
| 1280bytes             | $\checkmark$      |
| 1518bytes             | Add Frame         |
|                       |                   |
|                       |                   |
|                       |                   |
|                       |                   |

| Up-1000T F<br>RFC2544 | • 🚺               |
|-----------------------|-------------------|
| Setup                 | Results-Stopped   |
| Thrpt Latency         | Frm Loss Burst    |
| Header Frames         | Threshold Control |
| 64bytes               |                   |
| 128bytes              |                   |
| 256bytes              |                   |
| 512bytes              | $\checkmark$      |
| 1024bytes             |                   |
| 1280bytes             |                   |
| 1518bytes             | Add Frame         |
| 9000bytes             | Delete            |
|                       |                   |
|                       |                   |
|                       |                   |

RFC 2544 Setup - Jumbo Frame


# Go back to top

# 8.1.3 Threshold Settings

# Threshold tab:

- User enables or disables threshold settings for the throughput and latency tests.
  - When enabled, threshold settings can be configured for all of the test frames selected in the frame settings tab.
- A Pass/Fail criteria will be applied when the threshold settings are enabled.
  - For example If the throughput threshold value for a 64 byte frame is configured for 80%, then a Pass criteria is assigned if the throughput rate is 80% or better
  - The threshold values for Throughput and Latency can be customized per user requirements. Tap on the selected value to edit.

#### **RFC 2544 Setup - Thresholds** Up-1000T F 🕞 🚧 🗖 RFC2544 Results Setup Thrpt Latency Frm Loss Burst Header Frames Threshold Control 🗹 Enable Thrpt(%) Ltncy(ms) 64bytes 70.00 1.000 2.000 128bytes 75.00 256bytes 80.00 3.000 512bytes 85.00 4.000 1024bytes 90.00 5.000 1280bytes 95.00 6.000 7.000 1518bytes 100.00



#### **RFC 2544 Threshold Editing**

# 8.1.4 Throughput, Latency, Frame Loss, and Burst Settings

The RFC 2544 test suite allows the user to run all of the four tests, one of the four tests, or a combination of any of the four tests. The user simply has to enable/disable which tests to perform by checking/unchecking a selection box in the respective tab for each test. By default all of the four tests are enabled.

The following parameters must be configured before running the RFC 2544 conformance test suite.

# Throughput tab:

- Max Rate: Up to 100% of the negotiated line rate. The default value is 100%.
  - This is the maximum transmit rate to perform the throughput test for each test frame size.
  - The user may configure this rate as a % of the total line rate or in Mbps. For example if the user configures the Max Rate to be 90% and the negotiated line rate of the link is 100Mbps, then the maximum transmit rate will be 90Mbps or 90% of the line rat
- Resolution: 1% to 0.001%. The default value is 1%.
- Duration: 5 to 999 seconds. The default value is 20 seconds.
  - The duration is the amount of time the throughput test is run for, for each frame size at a given rate.

| <mark>Setup</mark><br>Header Frar | nes 1      |       | Resi<br>Ald |       |  |
|-----------------------------------|------------|-------|-------------|-------|--|
| Thrpt Later                       |            |       |             | Burst |  |
| Asymmetric                        | Up S       | tream |             | T     |  |
| MAX Rate                          | 100.00 % 🔻 |       |             |       |  |
| Resolution                        | 1.00%      |       |             |       |  |
| Duration                          | 20 seconds |       |             |       |  |
| Enable Tes                        | t 🛽        | Z     |             |       |  |

#### RFC 2544 Setup - Throughput Upstream

## RFC 2544 Setup - Throughput Downstream

| Up-1000T F<br>RFC2544 | (    | D 🧏 🛛    |      | ✓       |
|-----------------------|------|----------|------|---------|
| Setup                 |      | ł        | Resi | ults    |
| Header Fra            | mes  | Thresh   | old  | Control |
| Thrpt Late            | ncy  | Frm Lo   | ISS  | Burst   |
| Asymmetric            | Dow  | 'n Strea | ım   | ▼       |
| MAX R <b>ate</b>      | 100. | 000      | %    | ▼       |
| Resolution            | 1.00 | %        |      |         |
| Duration              | 20 s | econds   | 3    |         |
|                       |      |          |      |         |

Enable Test 🛛 🗹



#### Go back to top

Latency tab: User configures:

• Test: Throughput Rate or Custom Rate. The default value is throughput.

- Throughput rate Latency test will be performed at the throughput rate found for each of the tested frame sizes.
- Custom rate User configures a custom rate in % or Mbps
- Rate: Only available if Custom Rate is selected'. Enter up to 100% of the negotiated line rate or enter the rate in Mbps.
- **Duration:** 5 to 999 seconds. The default value is 20 seconds. This is the amount of time that the latency test will be performed for each test frame size.
- **Repetitions:** 1 to 100. The default value is 1. This is the amount of times that the latency test will be repeated for each test frame size

| Setup       Results         Header       Frames       Threshold       Control         Thrpt       Latency       Frm Loss       Burst         TEST       Throughput Rate       ▼         Duration       20 seconds       ■         Repetitions       1       ■ | Jp-1000<br>RFC2544 |               | (    | P 🤸 🗖       | ✓       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|------|-------------|---------|--|
| ThrptLatencyFrm LossBurstTESTThroughput Rate▼Duration20 secondsRepetitions1                                                                                                                                                                                   | Se                 | Setup Results |      |             |         |  |
| TEST Throughput Rate<br>Duration 20 seconds<br>Repetitions 1                                                                                                                                                                                                  | Header             | Frai          | nes  | Threshold   | Control |  |
| Duration 20 seconds<br>Repetitions 1                                                                                                                                                                                                                          | Thrpt              | Late          | ncy  | Frm Loss    | Burst   |  |
| Repetitions 1                                                                                                                                                                                                                                                 | TEST               |               | Thro | oughput Rat | te 🔻    |  |
|                                                                                                                                                                                                                                                               | Duratior           | ۱             | 20 s | econds      |         |  |
| Enable Test 🔽                                                                                                                                                                                                                                                 | Repetitions 1      |               |      |             |         |  |
|                                                                                                                                                                                                                                                               | Enable             | e Tes         | st   |             |         |  |

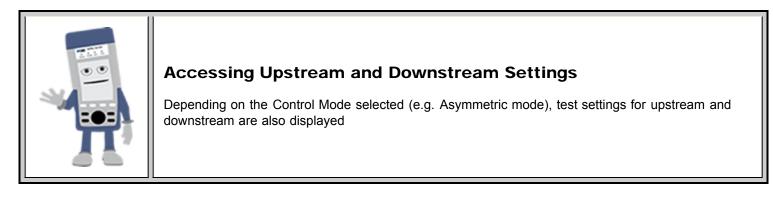
#### Up-1000T F P RFC2544 Results Setup Header Frames Threshold Control Latency Frm Loss Thrpt Burst TEST Custom Rate Ŧ Rate 100.000 1% Duration 20 seconds Repetitions Enable Test $\checkmark$

RFC 2544 Setup - Latency Custom Rate

# Go back to top

## Frame Loss tab:

- Max Rate: Up to 100% of the negotiated line rate. The default value is 100%. This is the maximum transmit rate to perform the frame loss test for each test frame size. The user may configure this rate as a % of the total line rate or in Mbps. For example if the user configures the Max Rate to be 90% and the negotiated line rate of the link is 100Mbps, then the maximum transmit rate will be 90Mbps or 90% of the line rate.
- Step Size: 1 to 10%. The default value is 10%. The step size is the rate % that the frame loss test will be reduced by in the event of any frame loss. For example if the Max Rate is 100Mbps (or 100%) and frames are lost at this rate, then the transmit rate will be reduced to 90Mbps (or 90%). The frame loss test will now be performed at the new rate until there is zero frame loss at two consecutive rate settings. This means that the test will have to be performed at 80% (assuming that there was zero frame loss at 90%).
- **Duration:** Selectable in the range 5 to 999 seconds. The default value is 20 seconds. The duration is the amount of time the throughput test is run for, for each frame size at a given rate


# RFC 2544 Setup - Frame Loss Upstream

# RFC 2544 Setup - Frame Loss Upstream

| Setup      |                  | F          | Resi | ults    |
|------------|------------------|------------|------|---------|
| Header Fra | mes <sup>-</sup> | Thresh     | old  | Control |
| Thrpt Late | ncy              | Frm Lo     | SS   | Burst   |
| Asymmetric | Up S             | Stream     |      | ▼       |
| MAX Rate   | 100.0            | 100.00 % 🔻 |      |         |
| Resolution | 1.00%            |            |      |         |
| Duration   | econds           | ;          |      |         |
| Enable Tes | st 🛙             | Z          |      |         |

| Up-1000T F<br>RFC2544 | (      | D 🧏 🗖  |       | ✓       |
|-----------------------|--------|--------|-------|---------|
| Setup                 |        | F      | ?esi  | ults    |
| Header Fran           | nes    | Thresh | old   | Control |
| Thrpt Late            | Frm Lo | ss     | Burst |         |
| Asymmetric            |        |        | m     | ▼       |
| MAX Rate              | 100.   | .000   | %     | ▼       |
| Resolution            | 1.00%  |        |       |         |
| Duration              | 20 s   | econds | i     |         |

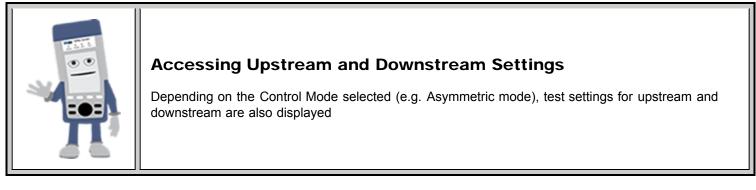
Enable Test 🛛 🗹



## Go back to top

#### Burst (Back-to-Back) tab:

- Max Rate: The default value is 100%. In the burst test, frames are always transmitted at the maximum rate for a given minimum and maximum burst duration.
- **Minimum Duration:** Selectable in the range 2 to 999 seconds. Default value is 2 seconds. This is the duration of the first burst
- **Maximum Duration:** Selectable up to 999 seconds. The default value is 20 seconds. This is the duration of the second burst, which must be greater than the minimum burst.
- **Repetitions:** Selectable in the range 1 to 100. The default value is 1. This is the amount of times that the latency test will be repeated for each test frame size


#### RFC 2544 Setup - Burst Upstream

RFC 2544 Setup - Burst Downstream

| Setup            |        |        | Resi |         |
|------------------|--------|--------|------|---------|
| Header Fram      | ies    | Thresh | old  | Control |
| Thrpt Laten      | су     | Frm Lo | ss   | Burst   |
| Asymmetric       | Up     | Strean | n    | ▼       |
| MAX R <b>ate</b> | 100    | 0.000  | %    | ▼       |
| Min Duration     | 2 s    | econds | 3    |         |
| Max Duration     | second | ds     |      |         |
| Repetitions      | 1      |        |      |         |
| Enable Test      |        | V      |      |         |
|                  |        |        |      |         |

| Up-1000<br>RFC2544 |              | (       | ₽ 🤘 =   |      | ✓       |
|--------------------|--------------|---------|---------|------|---------|
| Se                 | etup         |         | R       | lesi | ults    |
| Header             | Frame        | es "    | Thresh  | bld  | Control |
| Thrpt              | Latenc       | :y      | Frm Lo: | 5S   | Burst   |
|                    | D٥           | wn Stre | am      | ▼    |         |
|                    | MAX Rate 100 |         |         | %    | ▼       |
|                    |              | econds  |         |      |         |
| Max Du             | 20           | second  | s       |      |         |
| Repetiti           | ons          | 1       |         |      |         |
|                    | -            |         | _       |      |         |

Enable Test 🛛 🗹



#### Go back to top

#### 8.1.5 Control Settings

#### **Overview**:

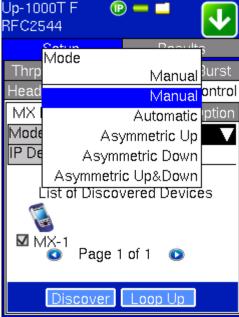
Asymmetrical links like ADSL and VDSL2 provide different line rates in the two directions - normally the downlink line rate is significantly higher than the uplink line rate. To verify the information for both the low and the high rates of the link, the user needs to send a test signal from one instrument located at one end of the link to an instrument at the other end of the link and vice versa to test traffic capacity. The two test instruments have to be synchronized, because the tests defined in RFC 2544 require the receiver to know the contents of the test signal to be transmitted in detail.

The MX120+ offers an automated RFC 2544 test application to perform throughput, frame loss and burstability tests in a localremote unit setup. The user first configures the test setup in the local MX120+ - once initiated, the local MX120+ transfers the setup information to the remote MX120+ via the line under test. Upon completion, the remote MX120+ transfers the test results back to the local MX120+, enabling the user to read the results for both directions of the link on the local unit. The dual-port capability of the MX120+ allows the user to test two links simultaneously.

## RFC 2544 End-to-End Testing



# **Control button:**


Configures the loop-up and loop-down commands necessary to control the remote unit or the test profile in the case of Asymmetric testing. The user is allowed to configure the commands manually or automatically.

- Manual selection: user must input the destination IP address of the far end device
- Automatic selection:
  - No configuration is necessary user only has to select the "discovered" far end device to control.
  - Select from a list of discovered devices to loop-up/down.
- Asymmetric Up
- Asymmetric Down
- Asymmetric Up/Down

# RFC 2544 Setup - Control Manual



# RFC 2544 Setup - Control Modes



## Go back to top

# 8.1.6 Starting/Stopping a RFC 2544 Test

Once all configurations have been made, the user can start the RFC 2544 test. The following are three scenarios of how to prepare and start the unit for RFC 2544 testing.

Note: If the testing on the fiber ports, make sure the LASER is turned On before starting the test.

# Far End Unit in Manual Loopback Mode:

- If the far end unit (another MX) is already in a manual loopback mode, the user must make sure that the control settings mode are set to manual. Do not send a loop up command, since it is not necessary.
- $\circ\;$  Once the correct control settings are configured, the user can start the test

The selected tests will run automatically. When all the tests are complete the test will stop automatically. If the RFC 2544 test

suite needs to be stopped before they are done, then simply press the Stop button, located in the actions pull down menu. The status of each selected test can be seen in the Results tab.

# Far End Unit Controlled with Manual Mode Loop Up/Down Commands

- If the far end unit is not manually looped back, then it must first receive a loop up command from the control unit before the RFC 2544 test suite can be started.
- To loop up the far end unit with the manual mode loop up/down commands, configure the control settings mode to manual.
- Enter the MAC and/or IP address of the far end unit.
- Send the loop up command by pressing 'Loop Up'

Once the far end unit has been looped back, start the test by pressing the Start button. When the all of the selected test are completed, the RFC 2544 test suite will stop automatically. Once all tests have been completed and there is no need to test again, go back to the Control tab, and press the 'Loop Down' button. This will send a loop down command to the far end unit to remove the loopback that is in place.

# Far End Unit Controlled with Automatic Mode Loop Up/Down Commands

- If the far end unit is not manually looped back, then it must first receive a loop up command from the control unit before the RFC 2544 test suite is started.
- To loop up the far end unit with the automatic mode loop up/down commands, configure the control settings mode to automatic.
- Enter the MAC and/or IP address of the far end unit.
- Press Start to automatically loop up the far end unit

Start the RFC 2544 test, and loop down the far end unit when all tests have been completed.

# Go back to top

# 8.2 RFC 2544 Results

The progress and current result of the RFC 2544 can be viewed as the test is in progress.

## Results tab:

Navigate the respective sub-tabs (throughput, latency, frame loss, or burst) to view the results for each test. For the burst test the results can be viewed in summary table format or test log format.

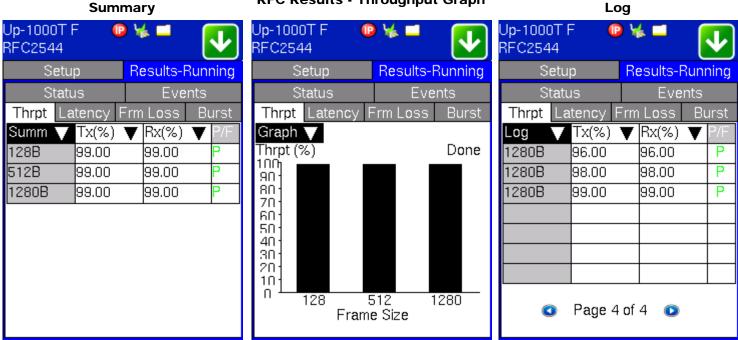
# 8.2.1 Status and Events

The status of each test is displayed including a time stamped log of each test.

## **RFC 2544 Results - Status**

| Up-1000T F 🛛 👊<br>RFC2544 | •*• 👽           |  |  |
|---------------------------|-----------------|--|--|
| Setup                     | Results-Running |  |  |
| Thrpt Latency R           | Frm Loss Burst  |  |  |
| Status                    | Events          |  |  |
| ST:22:25:23               | ET:00:06:43     |  |  |
| Throughput Test           | Done            |  |  |
| Latency Test              | Done            |  |  |
| Frame Loss Test           | In Progress     |  |  |
| Burstability Test         | Pending         |  |  |
|                           |                 |  |  |

| RFC 2544 Results - Events |                |        |          |         |  |
|---------------------------|----------------|--------|----------|---------|--|
| Up-1000T<br>RFC2544       | F 🤇            | • 🤘    |          | ✓       |  |
| Setu                      | ıp             | Resu   | ts-      | Running |  |
| Thrpt La                  | atency         | Frm Lo | SS       | Burst   |  |
| Stat                      | us             |        | Eve      | ents    |  |
| time                      | Events         |        | ΤE       | ST      |  |
| 22:25:23                  | Test St        | arted  | RFC 2544 |         |  |
| 22:25:23                  | Test St        | arted  | Thruput  |         |  |
| 22:29:14                  | Test St        | opped  | Th       | ruput   |  |
| 22:29:14                  | Test St        | arted  | La       | tency   |  |
| 22:30:28                  | Test St        | opped  | La       | tency   |  |
| 22:30:28                  | Test Started F |        |          | n Loss  |  |
|                           |                |        |          |         |  |
| ٥                         | Page 1         | of 1   | ٥        |         |  |


DEC 2544 Deculte Evente

# 8.2.2 Throughput

Throughput results are displayed in the following formats:

- Graphical
- Summary table
- · Test log table

## **RFC Results - Throughput** Summary



**RFC Results - Throughput Graph** 

## Go back to top

## 8.2.3 Latency

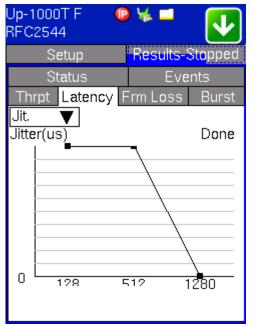
Latency results are displayed in the following formats;

- Graphical
- Summary table
- Test log Byte Size, Latency (ms), Rate (%) and Status (Pass or Fail)
- Jitter Graph
- Jitter Summary
- Jitter Log

RFC Results - Latency Summary RFC Results - Latency Graph

**RFC Results - Latency Test Log** 

**RFC Results - Throughput Test** 


| Set       | up  |       | Re   | esults- | Ŝt  | opped |  |
|-----------|-----|-------|------|---------|-----|-------|--|
| Sta       | tus | 6     |      | Eve     | ent | ts    |  |
| Thrpt L   | at  | ency  | Frm  | Loss    |     | Burst |  |
| Summa     | Z   | Ltncy | (us) | Rate    | %   | statu |  |
| 128 byte: | 5   | 6.96  |      | 99.00   | 0   | Pass  |  |
| 512 byte: | 5   | 12.98 |      | 99.00   | 0   | Pass  |  |
| 1280 byte | es  | 25.26 | i    | 99.00   | 0   | Pass  |  |
|           |     |       |      |         |     |       |  |
|           |     |       |      |         |     |       |  |
|           |     |       |      |         |     |       |  |
|           |     |       |      |         |     |       |  |
|           |     |       |      |         |     |       |  |

|      | 000T F 🛛 🍳<br>2544 | 9 🧏 🗖    | <ul><li>✓</li></ul> |
|------|--------------------|----------|---------------------|
|      | Setup              | Results  | -Stopped            |
|      | Status             | Ev       | /ents               |
| Th   | rpt Latency        | Frm Loss | s Burst             |
| Gra  | phi 🔻              |          |                     |
| Late | ency(us)           |          | Done                |
|      |                    |          | <u>/</u>            |
|      |                    | /        |                     |
|      |                    | _/_      |                     |
|      |                    | ≠        |                     |
|      |                    |          |                     |
|      | _                  |          |                     |
| 0    | 128                | 512      | 1280                |
|      |                    |          | 1200                |
|      |                    |          |                     |

| RFC2544     |         |         |        |      |       |  |
|-------------|---------|---------|--------|------|-------|--|
| Setup       | Re      | sults-S | ito    | pped |       |  |
| Status      | 3       |         | Eve    | nts  | 3     |  |
| Thrpt Lat   | ency F  | rm      | Loss   | E    | Burst |  |
| Test 🔻      | Ltncy() | us)     | Rate%  |      | statu |  |
| · · ·       | 6.96    |         | 99.000 | ) F  | ass   |  |
| 512 bytes   | 12.98   |         | 99.000 | ) F  | ass   |  |
| 1280 bytes  | 25.26   |         | 99.000 | ) F  | ass   |  |
|             |         |         |        |      |       |  |
|             |         |         |        |      |       |  |
|             |         |         |        |      |       |  |
|             |         |         |        |      |       |  |
| Page 1 of 1 |         |         |        |      |       |  |

1000T D

## RFC Results - Latency Jitter Graph



# RFC Results - Latency Jitter Summary

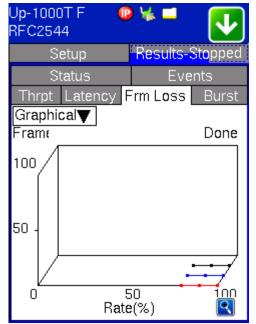
| Up-1000T F<br>RFC2544 | œ        | ) 🤘 |        |    | ≁     |
|-----------------------|----------|-----|--------|----|-------|
| Setup                 |          | Re  | sults- | St | opped |
| Status                | 3        |     | Eve    | nt | is    |
| Thrpt Lat             | ency F   | rm  | Loss   |    | Burst |
| Jit. 🔻                | Jit.(us) |     | Rate%  | 6  | statu |
| 128 bytes             | 0.005    |     | 99.00  | 0  | Pass  |
| 512 bytes             | 0.005    |     | 99.00  | 0  | Pass  |
| 1280 bytes            | 0.000    |     | 99.00  | 0  | Pass  |
|                       |          |     |        |    |       |
|                       |          |     |        |    |       |
|                       |          |     |        |    |       |
|                       |          |     |        |    |       |
|                       |          |     |        |    |       |
|                       |          |     |        |    |       |
|                       |          |     |        |    |       |

# **RFC Results - Latency Jitter Log**

| Up-1000T F 🔮 🦌 🗖 🚺 |                 |    |         |         |  |  |
|--------------------|-----------------|----|---------|---------|--|--|
| Setup              |                 | ке | suits-a | Stopped |  |  |
| Status             | 3               |    | Eve     | nts     |  |  |
| Thrpt Lat          | ency F          | rm | Loss    | Burst   |  |  |
| Jit. Log 🔻         | Jit.(us)        | )  | Rate%   | statu   |  |  |
| 128 bytes          | 0.005           |    | 99.000  | ) Pass  |  |  |
| 512 bytes          | 0.005           |    | 99.000  | ) Pass  |  |  |
| 1280 bytes         | 0.000           |    | 99.000  | ) Pass  |  |  |
|                    |                 |    |         |         |  |  |
|                    |                 |    |         |         |  |  |
|                    |                 |    |         |         |  |  |
|                    |                 |    |         |         |  |  |
|                    |                 |    |         |         |  |  |
|                    | 💿 Page 1 of 1 💿 |    |         |         |  |  |

## Go back to top

# 8.2.4 Frame Loss


Frame loss results are displayed in the following formats;

- Summary table
- Test log table
- Graphical

## **RFC Results - Frame Loss Summary**

| Up-1000T F<br>RFC2544 | 0     | ) 🦗 🗖           |         | ✓       |  |
|-----------------------|-------|-----------------|---------|---------|--|
| Setup                 |       | Resul           | ts-3    | Stopped |  |
| Status                |       | E               | Eve     | nts     |  |
| Thrpt Later           | ncy F | rm L <b>o</b> s | 3S      | Burst   |  |
| Summary 🔻             | FrLos | 3S%             | Ra      | te%     |  |
| 128 bytes             | 0.125 | j               | 10      | 0.000   |  |
| 128 bytes             | 0.000 |                 | 90.000  |         |  |
| 512 bytes             | 0.125 |                 | 100.000 |         |  |
| 512 bytes             | 0.000 |                 | 90.000  |         |  |
| 1280 bytes            | 0.125 |                 | 100.000 |         |  |
| 1280 bytes            | 0.000 |                 | 90.000  |         |  |
|                       |       |                 |         |         |  |
| Page 1 of 1           |       |                 |         |         |  |

# **RFC Results - Frame Loss Test Graph**

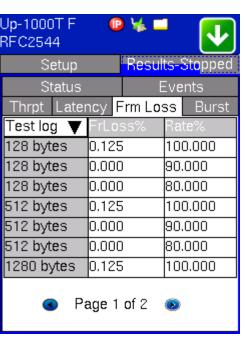


#### Go back to top

#### 8.2.5 Burst

Burstability (back-back) results are displayed in the following formats;

- Summary table
- Test log table

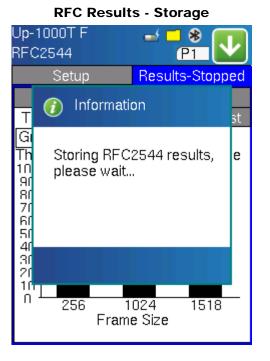

**RFC Results - Burstability Summary** 

#### 1280 bytes 0.125 100.000 Page 1 of 2 ۲

# **RFC Results - Frame Loss Graph (Zoomed)**

| Up-1000T F 🛛 🕼<br>RFC2544 | * = 👽          |
|---------------------------|----------------|
| Setup                     | Results        |
| Status                    | Events         |
| Thrpt Latency F           | Frm Loss Burst |
| Graphical                 |                |
| 128 k                     | oyte frames    |
| 512 k                     | oyte frames    |
| <b>_</b> 1280             | byte frames    |
|                           |                |
|                           |                |
|                           |                |
|                           |                |
|                           | _              |
|                           | 🛛 🕄            |

# **RFC Results - Burstability Test Log**




| Jp-1000T F<br>RFC2544 | •     | ) 🧏 💻     | ✓       |
|-----------------------|-------|-----------|---------|
| Setup                 |       | Results-S | Stopped |
| Status                |       | Eve       | nts     |
| Thrpt Later           | ncy F | rm Loss   | Burst   |
| Summary 🔻             | Avgl  | Frame Co  | unt     |
| 128 bytes             | 1182  | 4323      |         |
| 512 bytes             | 3289  | 473       |         |
| 1280 bytes            | 1346  | 153       |         |
|                       |       |           |         |
|                       |       |           |         |
|                       |       |           |         |
|                       |       |           |         |
|                       |       |           |         |
|                       |       |           |         |
|                       |       |           |         |

| Up-1000T F<br>RFC2544 | G     | ) 🤘 🖬                | <        |  |  |
|-----------------------|-------|----------------------|----------|--|--|
| Setup                 |       | Results-Stopped      |          |  |  |
| Status                |       | E٧                   | ents/    |  |  |
| Thrpt Later           | ndy F | <sup>E</sup> rm Loss | s Burst  |  |  |
| Test log 🔻            | Avg.  | Frame                | Duration |  |  |
| 128 bytes             | 1182  | 432                  | 2        |  |  |
| 128 bytes             | 1182  | 4323                 | 20       |  |  |
| 512 bytes             | 3289  | 46                   | 2        |  |  |
| 512 bytes             | 3289  | 473                  | 20       |  |  |
| 1280 bytes            | 1346  | 14                   | 2        |  |  |
| 1280 bytes            | 1346  | 153                  | 20       |  |  |
|                       |       |                      |          |  |  |
| Page 1 of 1           |       |                      |          |  |  |

#### 8.2.6 Saving RFC 2544 Results

Once the test has been stopped the results can be saved by pressing the save key on the keypad. The results will be saved and named automatically. Once the results are saved, the user may view or rename the results file by going to the Explorer folder located in the Files menu.



| Up-1000T F<br>Files | (     | ₽ 🤘 🗖   | 8        |
|---------------------|-------|---------|----------|
| Capacity            | Exp   | lorer   | Transfer |
| Name:               | Size: | Туре:   | Date:    |
| <u>=</u> 221048     | 4k    | rfc254  | 08/21/00 |
| <u>=</u> 224102     | 4k    | rfc254  | 08/21/00 |
|                     |       |         |          |
| View Del            | Rer   | name    | U/L Job  |
| 21-Aug-2000         | D 2   | 2:41:48 |          |

#### **RFC Results - File Explorer**

Go back to top

# 9.0 Throughput Testing (Multiple Streams)

#### **Overview**:

The throughput application (or the multiple streams application) performs the following measurements: throughput performance, frame loss analysis, delay analysis, frame/packet arrival analysis, received traffic type analysis, and received traffic frame size analysis. On the transmit side, the throughput application allows for the configuration of up to 8 traffic streams with their own MAC and IP addresses, VLAN tags (up to 3 per stream), bandwidth/rate, frame size, and L2 and/or L3 quality of service (QoS)

parameters. On the receiver end the traffic is analyzed on a per stream (up to 8 streams) basis as well as a global or aggregate measurement.

This application is very useful in verifying the transport of traffic with different prioritization settings across a network link. The test helps verify that the network can handle high priority traffic and low priority traffic accordingly.

## Go back to top

# 9.1 Setup

Unless otherwise noted, the Frame Header and related setups are identical to the <u>BERT</u> and <u>RFC 2544</u> Applications described above. The following parameters must be configured prior to performing a Throughput test;

- Number of streams (See General settings below)
- Bandwidth per stream (See General settings below)
- Test layer
- Frame Type
- VLAN tags
- MPLS tags
- Frame header per stream (if applicable)
- Traffic profile per stream (if applicable)
- Error injection per stream (if applicable)
- Control settings of the far end devices (if applicable).

**Throughput Setup - General** 

#### Go back to top

#### 9.1.1 General Settings

- **Profile:** Load a previously configured test profile or create a new profile from the existing settings.
- **# of Streams:** From 1 to 8 streams. Pressing the zoom function, displays the Bandwidth allocated per Stream: **Note**: The total bandwidth for all streams cannot exceed 100%.

| Up-1000T F<br>Throughput | 0      | -     |     | •          |  |
|--------------------------|--------|-------|-----|------------|--|
| Setup                    |        | Re    | sul | ts-Running |  |
| Header                   | Tra    | affic |     | Error Inj  |  |
| Genera                   | ıl     |       | (   | Control    |  |
| Profile                  |        |       | De  | efault 🛛 🔻 |  |
| RTD Measu                | iremer | nt    | Er  | nable 🔻 🔻  |  |
| # of Stream:             | 5      |       | 4 🔻 |            |  |
| Total TX Ra              | .te(Mb | ps)   | 10  | 00.00      |  |
|                          |        |       |     | ٩          |  |
|                          |        |       |     |            |  |
|                          |        |       |     |            |  |

# Up-1000T F P - C Throughput Of Total Bandwidth per Stream Stream #1 40.000 Stream #2 25.000 Stream #3 22.500 Stream #4 12.500 Total 100.000

#### Go back to top

#### 9.1.2 Control

#### **Control button:**

**Overview:** Configures the loop-up and loop-down commands necessary to control the far end unit. The user is allowed to configure the commands manually or automatically.

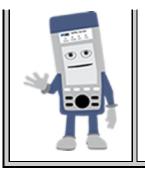
#### Throughput Setup - Stream BW Overview

- Manual selection: user must input the destination MAC/IP address of the far end device including the command type
  Automatic selection: User must select from a list of discovered devices to loop-up/down.
  - In automatic mode no configuration is necessary user only has to select the "discovered" far end device to control.

## 9.1.3 Per Stream Configurations

Please note that for any of the per stream configurations (Header, Traffic, and Error Injection), a stream number will be displayed. The user must select each stream number separately to configure the respective parameters. Select the stream # by tapping the stream number box at the top right hand side of the screen.

# Header Settings (Per Stream Configurations)


- Profile: Load a previously configured test profile or create a new profile from the existing settings.
- Test: Select the test layer. Options Layer 2 and Layer 3.
- Frame Type: Select the Ethernet frame type. The options are 802.3 Raw (IEEE 802.3 frame without LLC), 802.3 LLC (IEEE 802.3 frame with LLC header), 802.3 SNAP (IEEE 802.3 frame with SNAP header), and Ethernet II (Dix). Note: The 802.3 Raw frame type is not available when Layer 3 is selected.
- VLAN: Off, 1 tag, 2 tags, or 3 tags. The user will be able to configured up to 3 VLAN tags (VLAN stacking, for Q-in-Q applications).
- MPLS: Off, 1 tag, 2 tags, or 3 tags. MPLS tag configuration is only available when the MPLS option is purchased.
- MAC, VLAN, MPLS, and IP: To configure the MAC addresses, VLAN ID/priority, MPLS label/CoS/etc, IP addresses and header, tap on the 3-D image of the frame on the screen. This will bring you to the configuration screens for all the header fields.
- MAC Header Tab: In the MAC tab the user must configure the destination MAC address of the far end partner test set. For the source address use the default source address of the test set or configure a different one. Depending on the type of frame the user may also configure an Ethernet Type filed (Ethernet II frame), LLC header fields (802.3 LLC frame), or SNAP header fields (802.3 SNAP frame).
- VLAN Tab: In the VLAN tab the, the VLAN ID, priority, and Tag Type (or Ethernet Type) can be configured for all available VLANs.
- **MPLS Tab:** In the MPLS tab the MPLS label, CoS priority settings, TTL, and S-bit fields are configured for all available MPLS tags.
- IP Tab: In the IP tab the user must configure the destination IP address and source address. The user may also configure the following IP header fields; IP TOS (for quality of service testing), TTL, fragment offset byte, and the protocol field.
- RX Filter: Filter traffic by MAC or IP source and destination addresses or VLAN tag.

# Throughput Setup - Stream List

| Up-1000T<br>Throughp                                                                                                    |     | (           |      | i 1 | ↓           |
|-------------------------------------------------------------------------------------------------------------------------|-----|-------------|------|-----|-------------|
| Stream #     Description       Stream #     S1       Hea     S1       Profil     S2       TEST     S3       VLAI     S4 |     |             |      |     |             |
| MPLS<br>PROTOC                                                                                                          | COL | UD          | Р    |     | ▼<br>▼      |
| MAC                                                                                                                     | IP  | U<br>D<br>P | Data | a   | C<br>R<br>C |
|                                                                                                                         |     |             |      |     | ٩           |

# Throughput Setup - Header / Stream #1

| Up-1000<br>Through |            | œ    | , 🚧 (         | S 1 (                 | ≁           |  |  |
|--------------------|------------|------|---------------|-----------------------|-------------|--|--|
| Se                 | tup        |      | Results       |                       |             |  |  |
| Ge                 | neral      |      | (             | Control               |             |  |  |
| Heade              | er         | Tra  | ıffic         | Error                 | · Inj       |  |  |
| Profile            |            | Defa | ault          |                       | V           |  |  |
| TEST               |            | · ·  | Layer 3 🛛 🔻 🔻 |                       |             |  |  |
|                    | Frame Type |      |               | Ethernet II (DIX) 🛛 🔻 |             |  |  |
| VLAN               |            | Off  |               |                       | ▼           |  |  |
| MPLS               |            | Off  |               |                       | V           |  |  |
| MAC                | IP         |      | Dat           | a                     | C<br>R<br>C |  |  |
|                    |            |      |               | (                     | ঀ           |  |  |



# **Multiple Streams**

All streams are configured for the same test layer - if layer 2 is selected, then all streams will be layer 2 traffic.

# Throughput - Header Summary Stream #1



# Throughput - MAC Setup Stream #1

|       | D<br>3-63-00-0 |                                        |  |
|-------|----------------|----------------------------------------|--|
| 00-18 | 3-63-00-0      | 0-6F                                   |  |
|       |                |                                        |  |
| 00-18 | 8-63-CC-F      |                                        |  |
| _     | 3-63-CC-BB-A   |                                        |  |
|       | 0800-IP 🔻      |                                        |  |
|       | Disable 🔻      |                                        |  |
|       | Disable 🔻      |                                        |  |
|       | 0              |                                        |  |
| Defa  | ult MAC        | Src                                    |  |
|       | Defa           | Disable<br>Disable<br>0<br>Default MAC |  |



# Multiple Streams - MAC/IP address setups

If all streams are going to the same far end unit, then the MAC/IP destination addresses must be the same on all of the streams.

If any of the traffic streams are going to more than one far end unit, please ensure that the correct MAC/IP destination addresses are configured for the respective streams.

# Go back to top

# 9.1.4 Traffic Settings (Individual Stream Configuration)

In the Traffic tab the user is be able to configure the traffic profile per stream, including frame size selection, traffic type, and transmit rate. If the same traffic type applies to all streams, apply this profile to all streams using the Apply to ALL button

- Frame Size: Enter the frame size when a Layer 2 or Layer 3 BERT is selected. Frame size configuration is not available for Layer 1 BERT. Frame sizes can be from 64 bytes to 1518 bytes, in addition to jumbo frames up to 9k bytes.
- Traffic Flow: Select from Constant, Ramp, Burst or Single Burst traffic flow.
- BW (Transmit Bandwidth): Configure the transmit rate for the stream.
- **Note:** the bandwidth allocation per stream is already configured in the General Settings tab, but can be modified in this screen as well.

| Up-1000T F<br>Throughput | œ       | ) 🚧   | 6 |            |  |
|--------------------------|---------|-------|---|------------|--|
| Setup                    |         |       | R | esults     |  |
| General                  | Control |       |   |            |  |
| Header                   | Tra     | iffic |   | Error Inj  |  |
| Traffic Flow             | Cons    | tant  |   | ▼          |  |
| Frame Size               | Fixed   | 1     |   | ▼          |  |
| Frame Size               | 1518    |       |   |            |  |
| Const BW                 | 12.50   | )     | % | of total 🔻 |  |
|                          |         |       |   |            |  |
|                          |         |       |   |            |  |
|                          |         |       |   |            |  |
|                          |         |       |   |            |  |
|                          |         |       |   |            |  |
|                          |         |       |   |            |  |

| Up-1000T F<br>Throughput | C     | ) — (  | SZ 🗸         |
|--------------------------|-------|--------|--------------|
| Setup                    |       | Resu   | Ilts-Running |
| General                  |       |        | Control      |
| Header                   | Tra   | íffic  | Error Inj    |
| Traffic Flow             | Ram   | о<br>С | V            |
| Frame Size               | 1518  |        |              |
| Start BW                 | 6.25  |        | %of 🛛 🔻      |
| Stop BW                  | 25.00 | )      | %of 🛛 🔻      |
| Step BW(%)               | 6.25  |        |              |
| Ramp Time                | 5     |        | ms 🔻         |
|                          |       |        |              |
|                          |       |        |              |
|                          |       |        |              |
|                          |       |        |              |
|                          |       |        |              |

# Throughput - Traffic Setup - Single Burst

| Up-1000T F<br>Throughput | e     | ) 🚧   |   | S1         |  |  |
|--------------------------|-------|-------|---|------------|--|--|
| Setup                    |       |       | F | Results    |  |  |
| Genera                   |       |       | ( | Control    |  |  |
| Header                   | Tra   | ffic  |   | Error Inj  |  |  |
| Traffic Flow             | Singl | e Bur | S | t 🔻        |  |  |
| Frame Size               | 1518  |       |   |            |  |  |
| Frame Num                | 1000  | 00    |   |            |  |  |
| Burst BW                 | 12.50 |       | % | of total 🔻 |  |  |
|                          |       |       |   |            |  |  |
|                          |       |       |   |            |  |  |
|                          |       |       |   |            |  |  |
|                          |       |       |   |            |  |  |
|                          |       |       |   |            |  |  |

# Go back to top

# 9.1.5 Error Injection Settings (Individual Stream Configuration)

Error injection can be performed during test. The type of errors and error injection are configured in the Error Injection tab. Once the test is running, error injection can be performed by pressing the Error Inject button on the right side of the screen.

- Error type: Select from Bit, CRC, Bit and CRC, OOS/IPR, TCP/UDP Checksum (Layer 4 only), or Pause.
- Injection Flow: The error injection flow determines how the selected errors will be injected. The user can select a single error or a specific count.
- **Count:** The user will be able to configure the error count via numeric keypad.

# Throughput - Error Inject Setup - CRC

# **Throughput - Error Inject Setup - Pause**

#### **Throughput - Traffic Setup - Burst**

| Up-1000T F                 | e     | ) 🐋  |       | ſ    |     |
|----------------------------|-------|------|-------|------|-----|
| Throughput                 |       |      | S 1   |      |     |
| Setup                      |       |      | Resu  | ilts |     |
| General                    |       |      | Cont  | rol  |     |
| Header                     | Tra   | ffic | Er    | ror  | Inj |
| Traffic Flow               | Burst |      |       |      | ▼   |
| Frame Size                 | 1518  |      |       |      |     |
| Burst 1 BW                 | 9.38  |      | %of t | otal | ▼   |
| Burst 1 Time               | 5     |      | ms    |      | ▼   |
| Burst 2 BW                 | 12.50 |      | %of t | otal | V   |
| Burst 2 Tim <mark>e</mark> | 5     |      | ms    |      | ▼   |
|                            |       |      |       |      |     |
|                            |       |      |       |      |     |
|                            |       |      |       |      |     |
|                            |       |      |       |      |     |

| Jp-1000T F    |       | ) 🚧 🗖  |           |  |  |  |  |
|---------------|-------|--------|-----------|--|--|--|--|
| Throughput    |       | S1 💙   |           |  |  |  |  |
| Setup         |       | F      | esults    |  |  |  |  |
| Genera        | .     | (      | Control   |  |  |  |  |
| Header        | Tra   | affic  | Error Inj |  |  |  |  |
| Error Type    |       | CRC    | V         |  |  |  |  |
| Injection Flo | W     | Count  | V         |  |  |  |  |
| Count         |       | 1000   |           |  |  |  |  |
|               |       |        |           |  |  |  |  |
|               |       |        |           |  |  |  |  |
|               |       |        |           |  |  |  |  |
|               |       |        |           |  |  |  |  |
|               |       |        |           |  |  |  |  |
|               |       |        |           |  |  |  |  |
|               | Annly | to All |           |  |  |  |  |
| Apply to All  |       |        |           |  |  |  |  |

| Up-1000T F 🛛 🕧<br>Throughput | ° 🗕 🔽           |  |  |  |  |  |
|------------------------------|-----------------|--|--|--|--|--|
| Setup                        | Results         |  |  |  |  |  |
| General                      | Control         |  |  |  |  |  |
| Header Tra                   | affic Error Inj |  |  |  |  |  |
| Error Type                   | Pause 🔻 🔻       |  |  |  |  |  |
| Injection Flow               | Single 🛛 🔻      |  |  |  |  |  |
| Pause Time                   | 1000            |  |  |  |  |  |
|                              |                 |  |  |  |  |  |
|                              |                 |  |  |  |  |  |
|                              |                 |  |  |  |  |  |
|                              |                 |  |  |  |  |  |
|                              |                 |  |  |  |  |  |
|                              |                 |  |  |  |  |  |
| Apply                        | / to All        |  |  |  |  |  |

## 9.1.6 Starting/Stopping a Throughput (Multiple Streams) Test

Once all the necessary configurations have been made, the user can now start the Throughput test. The following are three scenarios of how to prepare and start the unit for Throughput testing.

Note: If the testing on the fiber ports, make sure the LASER is turned On before starting the test.

#### • Far End Unit in Manual Loopback Mode:

- If the far end unit (another MX) is already in a manual loopback mode, the user must make sure that the control settings mode is set to manual. Do not send a loop up command, since it is not necessary.
- Once the correct control settings are configured, the user can start the test

The selected tests will run automatically. When all the tests are complete the test will stop automatically. If the Throughput test needs to be stopped before they are done, then simply press the Stop button, located in the actions pull down menu. The status of each selected test can be seen in the Results tab.

#### • Far End Unit Controlled with Manual Mode Loop Up/Down Commands

- If the far end unit is not manually looped back, then it must first receive a loop up command from the control unit before the Throughput test can be started.
- To loop up the far end unit with the manual mode loop up/down commands, configure the control settings mode to manual.
- Enter the MAC and/or IP address of the far end unit.
- Send the loop up command by pressing 'Loop Up'

Once the far end unit has been looped back, start the test by pressing the Start button. Once Throughput tests have been completed and there is no need to test again, go back to the Control tab, and press the 'Loop Down' button. This will send a loop down command to the far end unit to remove the loopback that is in place.

#### Far End Unit Controlled with Automatic Mode Loop Up/Down Commands

- If the far end unit is not manually looped back, then it must first receive a loop up command from the control unit before the Throughput test is started.
- To loop up the far end unit with the automatic mode loop up/down commands, configure the control settings mode to automatic.
- Enter the MAC and/or IP address of the far end unit.
- Press Start to automatically loop up the far end unit

Start the Throughput test, and loop down the far end unit when all tests have been completed.

#### Go back to top

# 9.2 Throughput Results

# 9.2.1 Viewing Test Results (Individual and Multiple Streams)

When the test is first started, the screen automatically changes to the Global/Aggregate results screen.

Go back to top

# 9.2.2 Global Results

The Aggregate screen displays;

- Line rate
- Framed rate
- Total data rate
- Total utilization
- Total # of frames
- Total number of bad frames
- Optical power measurement (if applicable).

The Global 'Stream Summary' screen displays;

- Stream number (#)
- Total received bandwidth per stream
- Errors/alarms associated with the stream
- Quality of Service (QOS) associated with each stream

# Throughput Results - Global Aggregate

| Jp-1000T F 🛛 📴 💳 🔤 🔽 |     |          |      |         |  |  |
|----------------------|-----|----------|------|---------|--|--|
| Setup                |     | Result   | :s-F | Running |  |  |
| Global               |     | Per      | Str  | ream    |  |  |
| Traffic Alarr        | ns  | Delay    | 1    | Errors  |  |  |
| Aggregate Stro       | eam | Summa    | ary  | Events  |  |  |
| ST:23:00:08          |     | ET:00:   | 14:  | 19      |  |  |
|                      | Тх  |          | Rx   |         |  |  |
| Line Rate            | 100 | M00.00   | 10   | 00.00M  |  |  |
| Framed Rate          | 742 | 42.76M   |      | 3.37M   |  |  |
| Data Rate            | 720 | 20.26M C |      | юK      |  |  |
| Utilization 75.      |     | 5.25% 1: |      | .50%    |  |  |
| Total Frames 514     |     | 198043   | 85   | 47280   |  |  |
| Bad Frames 0         |     |          | 17   | 094446  |  |  |
|                      |     |          |      |         |  |  |

# Go back to top

The Global 'Errors' screen displays the Current and Total error count of all streams:

- Bits
- BER
- Symbol
- FCS/CRC
- IP Checksum
- Jabber Frames
- Runt Frames

The Global 'Alarms' screen displays the Current and Total alarm count of all streams:

# Throughput Results - Stream Summary

| Up-1000T<br>Throughp |          | C  |           | ✓       |
|----------------------|----------|----|-----------|---------|
| Set                  | up       |    | Results-P | lunning |
| Glo                  | bal      |    | Per Str   | eam     |
| Traffic              | Alarms   | 3  | Delay     | Errors  |
| Aggrega              | te Strea | ım | Summary   | Events  |
| Stream#              | %BW      | E  | rrors     | QoS     |
| 1                    | 12.50    | Т  | CP/UDP C  | 5       |
| 2                    | 0.00     | Ν  | one       | 5       |
| 3                    | 0.00     | Ν  | one       | 5       |
| 4                    | 0.00     | Ν  | one       | 5       |
|                      |          |    |           |         |
|                      |          |    |           |         |
|                      |          |    |           |         |
|                      |          |    |           |         |

- LOS synchronization in ms
- Service Disruption statistics in ms

# Throughput Results - Global Errors (Page 1)

| Up-1000T F 🛛 🕑 🗕 🗖 🚺 |         |          |         |          |         |  |
|----------------------|---------|----------|---------|----------|---------|--|
| Set                  | :up     |          | Result  | ts-F     | Running |  |
| Glo                  | bal     |          | Per     | Str      | eam     |  |
| Aggrega              | te Stre | eam      | i Summ  | ary      | Events  |  |
| Traffic Alarms       |         |          | Delay   | /        | Errors  |  |
|                      | C       |          | rrent T |          | tal     |  |
| Bits                 |         | N/A      |         | N/A      |         |  |
| BER                  |         | N/A      |         | N/A      |         |  |
| Symbol I             | Error   | 0        |         | 0        |         |  |
| FCS/CR               | С       | 0        |         | 0        |         |  |
| FCS/CRC(%)           |         | 0.00E+00 |         | 0.00E+00 |         |  |
| IP Checksum          |         | 0        |         | 0        |         |  |
| IP chks(%)           |         | 0.0      | 0E+00   | 0.0      | IOE+00  |  |
| ٩                    | Ρ       | age      | 1 of 2  |          | ٥       |  |

# **Throughput Results - Global Alarms**

| Jp-1000T F 🛛 😰 🗕 🗖 🚺 |           |       |          |       |         |
|----------------------|-----------|-------|----------|-------|---------|
| Set                  | tup       |       | Resul    | ts-F  | Running |
| Glo                  | bal       |       | Per      | · Str | ream    |
| Aggrega              | te Stri   | eam   | Summ     | ary   | Events  |
| Traffic              | Alarr     | ns    | Delay    | /     | Errors  |
| Cui                  |           |       | rrent    | Τo    | tal     |
| LOS(ms               | LOS(ms) 0 |       | 0.00E+   |       | )0E+00  |
| LOSync               | (ms)      | N/A   |          |       | A       |
| Service              | Disru     | iptic | on (time | e)    |         |
| Current              |           | Om    | S        |       |         |
| Total                |           | Om    | ms       |       |         |
| Last                 |           | Om    | S        |       |         |
| Min/Ma:              | x         | Om    | S        | Om:   | 5       |
| Times                |           | 0     |          |       |         |

#### Go back to top

The Global 'Traffic' screen displays:

- Frame Type of all streams
- Traffic Type/s of all streams
- Frame size of all streams

**Throughput Results - Global Traffic Summary** 

# Throughput Results - Global Errors (Page 2)

| Up-1000T<br>Throughp |         | C   |        |     | ✓       |  |
|----------------------|---------|-----|--------|-----|---------|--|
| Set                  | up      |     | Result | s-F | Running |  |
| Glo                  | bal     |     | Per    | Str | ream    |  |
| Aggrega              | te Stre | eam | Summa  | ary | Events  |  |
| Traffic              | Alarr   | ns  | Delay  |     | Errors  |  |
|                      |         | Cur | rrent  | Τo  | tal     |  |
| Jabber F             |         | 0   |        | 0   |         |  |
| Runt Fra             | ımes    | 0   |        | 0   |         |  |
|                      |         |     |        |     |         |  |
| ٥                    | Р       | age | 2 of 2 |     | •       |  |

**Throughput Results - Global Stream Delay** 

| Jp-10007        |                     | ) — 🖬            |                  |
|-----------------|---------------------|------------------|------------------|
| Throughp<br>Set |                     | Results-F        |                  |
| Glo             |                     | Per Str          |                  |
|                 | te Stream<br>Alarms | Summary<br>Delay | Events<br>Errors |
| Frame<br>Type   |                     | Doidy            |                  |
| Traffic<br>Type | l                   | Jni <b>ca</b> st |                  |
| Frame<br>Size   | 128                 | 30-1518B         |                  |
|                 | 2                   |                  | 1000             |

| Up-1000T F<br>Throughput |         |           | ✓       |  |  |  |
|--------------------------|---------|-----------|---------|--|--|--|
| Setu                     | 0       | Results-F | Running |  |  |  |
| Globa                    | al      | Per Str   | ream    |  |  |  |
| Aggregate                | Stream  | Summary   | Events  |  |  |  |
| Traffic A                | larms   | Delay     | Errors  |  |  |  |
| Frm Arriva               | al Dela | У         |         |  |  |  |
| Current                  | 86.29   | 86.29 us  |         |  |  |  |
| Minimum                  | 86.29   | 86.29 us  |         |  |  |  |
| Maximum                  | 86.30   | 86.30 us  |         |  |  |  |
| Average                  | 86.29   | 36.29 us  |         |  |  |  |
|                          | Varia   | ation     |         |  |  |  |
| Current                  | 0.00    | us        |         |  |  |  |
|                          |         |           |         |  |  |  |
|                          |         |           |         |  |  |  |
|                          |         |           |         |  |  |  |

#### 9.2.3 Individual Stream Results

In the 'Per Stream' tab the following measurements are available:

- Summary Framed rate, data rate, # of bytes, total # of frames associated with each stream
- Errors Errors associated with each stream
- Events Events associated with each stream
- Traffic Traffic statistics associated with each stream
- Delay Delay associated with each stream
- Rates Rates information associated with each stream

## Throughput Results - Summary Stream #1

| Jp-1000T F<br>Throughput |                    |       | <u>S1</u>                |
|--------------------------|--------------------|-------|--------------------------|
| Setup                    |                    | Rest  | ults-Running             |
| Global                   |                    | Pe    | er Str <mark>ea</mark> m |
| Traffic                  | Ever               | nts   | Delay                    |
| Summary                  | En                 | rors  | Rates                    |
| ST:23:00:08              |                    | ET:0  | 0:20:31                  |
|                          | Тx                 |       | Rx                       |
| Framed Rate              | : 394              | 1.80M | 123.37M                  |
| Data Rate                | 382                | .84M  | 0.00K                    |
| Utilization              | 40.0               | 0%    | 12.50%                   |
| Total Frames             | s <mark>394</mark> | 1294  | 2 12326526               |
| Bad Frames               | 0                  |       | 24652879                 |
|                          |                    |       |                          |
|                          |                    |       |                          |

# Throughput Results - Summary Stream #2

| Up-1000T F<br>Throughput |   | ſ       | ₩    |     | S 2 🗸      |
|--------------------------|---|---------|------|-----|------------|
| Setup                    |   |         | Res  | uli | ts-Running |
| Global                   |   |         | P    | er  | Stream     |
| Traffic                  | E | Ever    | nts  |     | Delay      |
| Summary                  |   | En      | rors |     | Rates      |
| ST:23:00:08              |   |         | ET:0 | 0:  | 21:00      |
|                          |   | Тх      |      |     | Rx         |
| Framed Rate              | 5 | 153     | .66M |     | 0.00K      |
| Data Rate                |   | 149.00M |      |     | 0.00K      |
| Utilization              |   | 15.57%  |      |     | 0.00%      |
| Total Frame              | s | 157     | 0732 | 0   | 0          |
| Bad Frames               |   | 0       |      |     | 0          |
|                          |   |         |      |     |            |
|                          |   |         |      |     |            |

#### Go back to top

The Per Stream 'Errors' screen displays the Current and Total error count of each stream:

- Bits
- BER

- Frame Loss
- Frame Loss %
- FCS/CRC
- Out of Sequence (OOS) frames
- IP Checksum
- Jabber Frames
- Runt Frames
- Giant Frames

# Throughput Results - Errors (Page Throughput Results - Errors (Page Throughput Results - Errors (Page

|                          | 1)         |           |   |                          | 2)       |       |           |                          | 3    | )      |            |
|--------------------------|------------|-----------|---|--------------------------|----------|-------|-----------|--------------------------|------|--------|------------|
| Up-1000T F<br>Throughput | 🕒 🤘 🕐      | S 1 - V   |   | Jp-1000T F<br>Throughput | •••      |       |           | Jp-1000T F<br>Throughput | 0    | ) 🧏 🗖  | S 1        |
| Setup                    | Result     | s-Running |   | Setup                    | Re       | sults | s-Running | Setup                    |      | Resul  | ts-Running |
| Global                   | Per        | Stream    |   | Global                   |          | Per   | Stream    | Global                   |      | Per    | Stream     |
| Traffic E                | Events     | Delay     | Γ | Traffic E                | Events   |       | Delay     | Traffic                  | Ever | nts    | Delay      |
| Summary                  | Errors     | Rates     |   | Summary                  | Errors   |       | Rates     | Summary                  | Eri  | rors   | Rates      |
|                          | Current    | Total     |   |                          | Current  | :     | Total     |                          | Cur  | rrent  | Total      |
| Bits                     | N/A        | N/A       |   | OOS/IPR(%)               | 0.00E+I  | 00    | 0.00E+00  | Jabber Fram              | 0    |        | 0          |
| BER                      | N/A        | N/A       |   | IP Checksum              | 10159    |       | 13108604  | Runt Frames              | 0    |        | 0          |
| Frame Loss               | 0          | 0         |   | IP chks(%)               | 1.00E+   | 02    | 1.00E+02  |                          |      |        |            |
| Frameloss(%              | 0.00E+00   | 0.00E+00  |   | top/udp_chks_            | 10159    |       | 13108789  |                          |      |        |            |
| FCS/CRC                  | 0          | 0         |   |                          |          |       |           |                          |      |        |            |
| FCS/CRC(%)               | 0.00E+00   | 0.00E+00  |   |                          |          |       |           |                          |      |        |            |
| OOS/IPR                  | 0          | 0         |   |                          |          |       |           |                          |      |        |            |
| ₽                        | age 1 of 3 | ۲         |   | <b>o</b> P:              | age 2 of | fЗ    | ٠         | <u> </u>                 | age  | 3 of 3 | ۲          |

## Go back to top

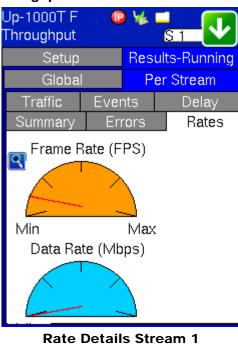
The Per Stream 'Events' screen displays a Date and Time stamped record of bit errors, alarms and other anomalies pertaining to each stream.

The Per Stream 'Delay' screen displays the frame delay information pertaining to each stream.

# Throughput Results - Events per Stream

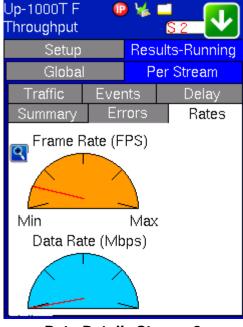
| Up-1000T F<br>Throughput | (     | •                 |                       | \$ 1  | ✓     |  |  |
|--------------------------|-------|-------------------|-----------------------|-------|-------|--|--|
| Setup                    |       | Res               | ult                   | s-Ru  | nning |  |  |
| Global                   |       | P                 | er                    | Strea | am    |  |  |
| Summary                  | Eri   | rors              |                       | Ra    | ates  |  |  |
| Traffic                  | Ever  | nts               |                       | De    | lay   |  |  |
| time                     | Even  | its               |                       | TE    | ST    |  |  |
| 23:22:41                 | UDP   | Chk               | En                    | · 10  | 159   |  |  |
| 23:22:41                 | IP Cł | nk Eri            | r                     | 10    | 158   |  |  |
| 23:22:40                 | UDP   | Chk               | En                    | · 10  | 159   |  |  |
| 23:22:40                 | IP Cł | nk Eri            | r                     | 10    | 159   |  |  |
| 23:22:39                 | UDP   | Chk               | En                    | · 10  | 159   |  |  |
| 23:22:39                 | IP Cł | IP Chk Err 10     |                       |       | 158   |  |  |
| 23:22:38                 | UDP   | UDP Chk Err 10160 |                       |       |       |  |  |
| 💿 Pa                     | age 1 | of 143            | O Page 1 of 147     O |       |       |  |  |

# Throughput Results - Delay per Stream


| 51                       |       |       |        | •     |      |
|--------------------------|-------|-------|--------|-------|------|
| Up-1000T F<br>Throughput | 0     | ) 🦗   | -<br>S | 1     | ↓    |
| Setup                    |       | Res   | ults   | -Rur  | ning |
| Global                   |       | P     | er S   | Strea | m    |
| Summary                  | Eri   | rors  |        | Ra    | tes  |
| Traffic                  | Ever  | nts   |        | Del   | ay   |
| Frm Arrival              | Delay | y –   |        |       |      |
| Current                  | 86.29 | 9 us  |        |       |      |
| Minimum                  | 86.29 | 9 us  |        |       |      |
| Maximum                  | 86.30 | )us   |        |       |      |
| Average                  | 86.29 | 9 us  |        |       |      |
|                          | ∀aria | ation |        |       |      |
| Current                  | 0.00  |       |        |       |      |
| Round trip               | Delay | y 🗌   |        |       |      |
| Current                  | 13.10 | 3 us  |        |       |      |
|                          |       |       |        |       |      |

The Per Stream 'Traffic' screen displays the frame type summary (graphical), frame type (tabular) and frame size distribution pertaining to each stream.

| Throughput Results<br>Traffic Overview per Stream |                          | ughput Results<br>Types per Stre |      | Throughput Results<br>Frame size per Stream |                |  |  |
|---------------------------------------------------|--------------------------|----------------------------------|------|---------------------------------------------|----------------|--|--|
| Up-1000T F 🛛 😰 🤘 🗖 🔤 🚺                            | Up-1000T F<br>Throughput | 🕞 🧏 🖬 ST                         |      | Up-1000T F 🧧 🧕                              | S - V          |  |  |
| Setup Results-Running                             | Traffic I                | Distribution Deta                | ails | Traffic Distrit                             | oution Details |  |  |
| Global Per Stream                                 | Frames                   | Frame                            | Size | Frames                                      | Frame Size     |  |  |
| Summary Errors Rates                              | Rx Frames                | #                                | %    | Distribution #                              | %              |  |  |
| Traffic Events Delay                              | Total                    | 14216150                         | 100  | <64B 0                                      | 0              |  |  |
| ٩                                                 | Test                     | 0                                | 0    | 64-127B O                                   | 0              |  |  |
|                                                   | VLAN                     | 0                                | 0    | 128-255B O                                  | 0              |  |  |
| Frame Non-Test                                    | Tx Frames                | #                                |      | 256-511B 0                                  | 0              |  |  |
| Туре                                              | Total                    | 45459756                         |      | 512-1023B O                                 | 0              |  |  |
|                                                   |                          |                                  |      | 1024-1279B0                                 | 0              |  |  |
| Frame 1280-1518B                                  |                          |                                  |      | 1280-1518B 1445                             | 9972 100       |  |  |
| Size                                              |                          |                                  |      | >1518B 0                                    | 0              |  |  |
|                                                   |                          |                                  |      |                                             |                |  |  |
| 0% 50% 100 <sup>°</sup> .                         |                          | OK                               |      |                                             | K              |  |  |


## Go back to top

The Per Stream 'Rate' screen displays the frame rate and data rate pertaining to each stream. Tapping the zoom icon displays the rate details applicable to that stream



# **Throughput Results - Rates Stream 1**

# **Throughput Results - Rates Stream 2**



## **Rate Details Stream 2**

| Up-1000T F    | 🛛 🕑 🧏 🛛     |           |  |  |  |  |  |
|---------------|-------------|-----------|--|--|--|--|--|
| Throughput    | ate Details | <u>S1</u> |  |  |  |  |  |
|               |             |           |  |  |  |  |  |
| Frames/sec    | Тх          | Rx        |  |  |  |  |  |
| Current       | 32510       | 10159     |  |  |  |  |  |
| Minimum       | 0           | 0         |  |  |  |  |  |
| Maximum       | 32510       | 10160     |  |  |  |  |  |
| Average       | 32146       | 10052     |  |  |  |  |  |
| Data Rate (Mb | o∕s Tx      | Rx        |  |  |  |  |  |
| Current       | 382.84      | 0.00      |  |  |  |  |  |
| Minimum       | 0.00        | 0.00      |  |  |  |  |  |
| Maximum       | 382.84      | 0.00      |  |  |  |  |  |
| Average       | 378.55      | 0.00      |  |  |  |  |  |
|               |             |           |  |  |  |  |  |
|               |             |           |  |  |  |  |  |
|               | OK          |           |  |  |  |  |  |
|               |             |           |  |  |  |  |  |

| Up-1000T F<br>Throughput | 0 🤘         | S2 🔽 |  |  |  |
|--------------------------|-------------|------|--|--|--|
| Ra                       | ate Details |      |  |  |  |
| Frames/sec               | Τx          | Rx   |  |  |  |
| Current                  | 12654       | 0    |  |  |  |
| Minimum                  | 0           | 0    |  |  |  |
| Maximum                  | 12654       | 0    |  |  |  |
| Average                  | 12508       | 0    |  |  |  |
| Data Rate (Mb            | √s Tx       | Rx   |  |  |  |
| Current                  | 149.01      | 0.00 |  |  |  |
| Minimum                  | 0.00        | 0.00 |  |  |  |
| Maximum                  | 149.01      | 0.00 |  |  |  |
| Average                  | 147.29      | 0.00 |  |  |  |
|                          |             |      |  |  |  |
|                          |             |      |  |  |  |
| OK                       |             |      |  |  |  |

# 9.2.4 Saving Throughput (Multiple Streams) Results

- Only once the test has been stopped, can the results be saved by pressing the save function key on the VePAL keypad
- If the measurement is not stopped, a pop-up message will appear warning the user.
- The test results are saved and named automatically. Once saved, the user may view or rename the results file by going to the Explorer tab located in the Files menu.



## **Throughput Results - Storage Warning**

# Stored Throughput Results - File Explorer

| Up-1000T F<br>Files  | (     | •               | <b>8</b> |  |  |  |
|----------------------|-------|-----------------|----------|--|--|--|
| Capacity             | Exp   | lorer           | Transfer |  |  |  |
| Name:                | Size: | Туре:           | Date:    |  |  |  |
| <u>=</u> 221048      | 4k    | rf <b>c</b> 254 | 08/21/00 |  |  |  |
| <u>=</u> 224102      | 4k    | rf <b>c</b> 254 | 08/21/00 |  |  |  |
| <u>=</u> 230414      | 27k   | thrpt           | 08/21/00 |  |  |  |
| <u>=</u> 230421      | 27k   | thrpt           | 08/21/00 |  |  |  |
| <u>-</u> 232738      | 38k   | thrpt           | 08/21/00 |  |  |  |
|                      |       |                 |          |  |  |  |
| View Del             | Rer   | name            | U/L Job  |  |  |  |
| 21-Aug-2000 23:43:07 |       |                 |          |  |  |  |



# 10.0 Loopback

The Loopback application in the main menu allows the user to establish a manual loopback on the test set. The loopback function is used when an end-to-end test needs to be performed with one of the test partners in software loopback mode. The Loopback function will loopback the incoming traffic to the test set back into the network under test.

The type of traffic that the loopback function loops back will depend on the type of test layer configured; Layer 1, Layer 2, or

Layer 3. Layer 1:

- In Layer 1 loopback, all incoming traffic to the Rx loopback interface will be sent out unaltered to the Tx loopback interface.
- Layer 2 or 3: In a Layer 2 or 3 loopback all incoming test traffic will be looped back.
  - The loopback function will swap the MAC destination and MAC Source addresses (for Layer 2) or MAC and IP destination and source addresses (for Layer 3).
  - All incoming frames with CRC errors will be dropped; similar to what an Ethernet switch does.
  - All broadcast and multicast frames will be dropped including any incoming unicast frames that have the MAC Source address equal to the MAC Destination address

# Go back to top

# 11.0 SyncE

# 11.1 SyncE Setup



## Go back to top

# 11.1.1 Port (Test Port selection)

Prior to starting the SyncE operation, the selected test port must be connected to a network that supports SyncE timing synchronization. Port selections include 10/100/1000T and 100/1000BaseX. After setting up the port, establish an IP connection by tapping on the IP tab and going through the IP setup. Please see section <u>6.1 Port Setup</u> for port configuration instructions.

Port Setup

**IP** Menu

| SetupStatusPort Selection10/100/1000T▼Auto-NegOff▼Speed100Mbps▼DuplexFull▼Flow ControlBoth On▼MDIXOn▼                 | Mode      | Port  |   | IP      | Sta   | tus |
|-----------------------------------------------------------------------------------------------------------------------|-----------|-------|---|---------|-------|-----|
| Auto-Neg     Off     ▼       Speed     100Mbps     ▼       Duplex     Full     ▼       Flow Control     Both On     ▼ | Set       | tup   |   | S       | tatus |     |
| Speed 100Mbps ▼<br>Duplex Full ▼<br>Flow Control Both On ▼                                                            | Port Sele | ction | 1 | 0/100/1 | 000T  | V   |
| Duplex Full V<br>Flow Control Both On V                                                                               | Auto-Neg  | g     | C | Dff     |       | V   |
| Flow Control Both On 🔻                                                                                                | Speed     |       | 1 | 00Mbp   | S     | V   |
| Ť                                                                                                                     | Duplex    |       | F | ull     |       | V   |
| MDIX On 🔻                                                                                                             | Flow Cor  | ntrol | E | Both On |       | V   |
| •••••                                                                                                                 | MDIX      |       | C | )n      |       | V   |

| Link Down (<br>IP DOWN | D 🧏 💻      | $\bigotimes$ |
|------------------------|------------|--------------|
| Mode Port              | IP         | Status       |
| ІР Туре                | IPv6       | V            |
| IP Address             | Static     | ▼            |
| Local IP               | 2001::1002 |              |
| Gateway                | 2001::1001 |              |
| CIDR                   | 64         |              |
| DNS Off 🛛 🔻            |            |              |
| Page 1 of 2            |            |              |
| Cc                     | onnect     |              |

## 11.1.2 IP (IP Setup)

IP configuration settings are as follows:

# (Page 1)

- IP Type IPv4 or IPv6
- IP Address Static, DHCP (IPv4 only) or AUTO (IPv6 only)
- Static The user is required to enter a Local IP, Gateway address, and Subnet. All Static fields can be filled by tapping on the section to access an alphanumeric keyboard
  - Local IP IPv4/IPv6 address of the test set
  - Gateway IPv4/IPv6 address of the network gateway
  - CIDR (IPv6 only) The user can enter a Classless Inter-domain Routing Network
  - Subnet (IPv4 only) The user can enter a subnet mask
- **DNS** Off, Manual, or Auto. If Manual is selected, a DNS IP is required in order to use the URL as a destination. Enter the IP address of the Domain Name System (DNS) Server providing domain name translation to IP addresses.

|                      | VLAN | (Pag | je 2 | 2)   |           |
|----------------------|------|------|------|------|-----------|
| Link Down<br>IP DOWN |      | IP 🤘 | -    |      | $\otimes$ |
| Mode                 | Port |      | IP   |      | Status    |
| VLAN                 |      | On   |      |      |           |
|                      |      | ID   | 0    | Pri  | 0         |
|                      |      | Туре | e Ox | 8100 | )         |
| DHCP Opt             | ions | All  |      |      |           |
| Vendor Type          |      |      |      |      |           |
| User Class           |      |      |      |      |           |
| Host Nam             | е    |      |      |      |           |
| Vendor In            | fo   |      |      |      |           |
| Page 2 of 2          |      |      |      |      |           |
|                      | E Co | onne | ct   |      |           |

| IP Status                                                      |               |           |           |
|----------------------------------------------------------------|---------------|-----------|-----------|
| Up-100T<br>192.168.1                                           |               | 0 🦗 🗖     | $\otimes$ |
| Mode                                                           | Port          | IP        | Status    |
| Local IP                                                       |               | 192.168.1 | .100      |
| Subnet N                                                       | 1 <b>a</b> sk | 255.255.2 | :55.0     |
| Gateway                                                        |               | 192.168.1 | .1        |
| Lease Tii                                                      | ne            | 00:05:00  |           |
| Lease Time 00:05:00<br>DHCP: PASS<br>IP: PASS<br>Gateway: PASS |               |           |           |
|                                                                | Disc          | onnect    |           |

# (Page 2)

- VLAN Off/On. For each VLAN tag, enter the following:
  - ID VLAN ID. Enter value 0 to 4095.
  - Pri VLAN priority 0 to 7.
  - Type Set to 8100. Indicates 802.1q tag type.
- DHCP Options DHCP options can be edited. Off, All, Vendor Type, User Class, Host Name, and Vendor Info. Note: DHCP Options are only available under AUTO or DHCP.

# Go back to top

# 11.1.3 Mode (SyncE test mode)

# SyncE Master-Emulation Mode

| Link Dowi<br>Setup | n 😣 🕼     | ) 🧏 🗖    | ✓        |
|--------------------|-----------|----------|----------|
| Mode               | Port      | IP       | Status   |
|                    | Mode      | Master-E | imulat 🔻 |
|                    | k Source  |          | •        |
| Clock I            | nput Port | RX2-Unb  | al 🔻     |
| Re                 | ference C |          | but      |
|                    | Port      | TX1-Bal  | •        |
|                    |           | 2Mbps    | •        |
|                    | ine Code  |          | •        |
|                    | Framing   |          | •        |
| PRB:               | S Pattern | 2^23-1   | •        |
|                    | Invert    |          |          |
|                    |           |          |          |
|                    | St        | art 🛛    |          |

| Link Dowi<br>Setup    | י 😣 🕼                   | ) 🦗 💻     | . ↓       |
|-----------------------|-------------------------|-----------|-----------|
| Mode                  | Port                    | IP        | Status    |
| Mode Slave-Emulatio 🔻 |                         |           | nulatio 🔻 |
| Re                    | f <mark>erence</mark> C | lock Outp | but       |
| Port TX1-Bal          |                         |           | ▼         |
|                       | Rate                    | 1.5Mbps   | •         |
| L                     | ine Code                | AMI       | ▼         |
| DS1 Framing           |                         | ESF       | ▼         |
| PRBS Pattern          |                         | 2^23-1    | •         |
|                       | Invert                  |           |           |
|                       |                         |           |           |
|                       | St                      | tart      |           |

# SyncE Slave-Emulation Mode

The Mode setup parameters are as follows:

- **Mode**: There are four test modes available: Master Emulation, Slave Emulation, Master Sync, and Slave Sync.
  - Master Emulation emulates a SyncE Master clock device. Reference clock used on the SyncE link can be made available for other network elements out of the PDH TX port at a different frequency but synchronized to the reference clock The clock can be regenerated out of the PDH TX port with a different clock format and is synchronized. The clock can be formatted to: 2Mbps (E1 signal), 2.048MHz, 1.544Mbps (T1 signal), 1.544MHz, 10MHz, 25MHz, and 125MHz.
  - **Slave Emulation** emulates a SyncE Slave clock device. Recovered clock can be regenerated out of the PDH TX port with a different clock format and is synchronized. The clock can be formatted to: 2Mbps (E1 signal), 2.048MHz, 1.544Mbps (T1 signal), 1.544MHz, 10MHz, 25MHz, and 125MHz.

## Master Sync Mode

## Slave Sync Mode

| nk Down   😢 😼 🗖 🚺          | Link Down<br>Setup | 8 🕫 🤘           |
|----------------------------|--------------------|-----------------|
| Mode Port IP Status        | Mode               | Port IP Sta     |
| Mode Master-Sync 🔻         |                    | Mode Slave-Sync |
| Clock Source GPS 🛛 🔍 🔻     |                    |                 |
| Clock Input Port RX2-Unbal |                    |                 |
|                            |                    |                 |
|                            |                    |                 |
|                            |                    |                 |
|                            |                    |                 |
|                            |                    |                 |
|                            |                    |                 |
|                            |                    |                 |
|                            |                    |                 |
|                            |                    |                 |
| Start                      |                    | Start           |

- **Master Sync** Reference clock to be used on the SyncE link can be used for Ethernet and PDH testing simultaneously while the clocks are synchronized.
- **Slave Sync** Clock recovered from the SyncE link can be used for Ethernet and PDH testing simultaneously while the clocks are synchronized.
- **Note:** In Sync mode, the PDH TX port is used for BERT testing, therefore, reference clock output is not available. The main application of the Sync mode is test whether the PDH network and Ethernet network are properly synchronized.
- Clock Source Select between an internal or external clock source. Possible external clock sources can be: 2 MHz, 2 Mbps (E1 signal), 10MHz, 25MHz, 125MHz or GPS (1 pps).
- Clock Input Port If a non-internal clock source is chosen, the external reference clock is connected through the Aux Rx port
- Reference Clock Output
  - Port Tx1 Unbalanced or Tx1 Balanced
  - Rate Signal rate to transmit to slave clock. Options include: 2 Mbps, 10 MHz, 25 MHz, 125 MHz, or None
  - Line Code HDB3 or AMI
  - E1 Framing Unframed, PCM31, PCM31C, PCM30, or PCM30C
  - PRBS Pattern
  - Invert

Press Start to start the connection.

## Indicator Symbols - M and SyncE

| Up-100T   |           | ) 🖌 🗖   |        |
|-----------|-----------|---------|--------|
| 192.168.1 | .101 🔣    | SyncE   |        |
| Mode      | Port      | IP      | Status |
|           | Mode      | Master- | Sync 🔻 |
|           | k Source  |         | V      |
| – Clock I | nput Port | RX2-Un  | bal 🔻  |
|           |           |         |        |
|           |           |         |        |
|           |           |         |        |
|           |           |         |        |
|           |           |         |        |
|           |           |         |        |
|           |           |         |        |
|           |           |         |        |
|           | 0         | top     |        |
|           |           | top     |        |

# **Indicator Symbols**

An M or S indicates that the test set is in Master or Slave Mode. A green SyncE icon indicates that the SyncE test is running and a green 1588 icon indicates that the 1588 test is running. If the icon is flashing or solid red, there may be an issue with setup and the test will not work.

## Go back to top

# 11.2 Clock Measurement

| Clock Me                | asur | ement Re       | sults     |
|-------------------------|------|----------------|-----------|
| Up-100T F<br>Clock Meas | (F   | ) 🤸 🗖<br>SyncE | $\otimes$ |
|                         | Set  | tup            |           |
|                         | Src  | 2Mbps          | V         |
|                         |      |                |           |

| Resul        | ts    |
|--------------|-------|
| Offset (ppm) | -19.1 |
| Min (ppm)    | -19.4 |
| Max (ppm)    | -18.6 |

| Stop | Stop |
|------|------|
|------|------|

Note: Clock and Wander measurements are only available in slave mode.

**Src** - Select the source of the reference clock used for the wander measurement. Possible external clock sources can be: 2 MHz, 2 Mbps (E1 signal), 10MHz, 25MHz, 125MHz or GPS.

Press Start to start the test. Offset, Min, and Max clock measurement offset results are displayed in ppm.

Go back to top

# 11.3 Wander Measurements Setup

- **Reference Clock** Select between an internal or external clock source. Possible external clock sources can be: 2 MHz, 2 Mbps (E1 signal), 10MHz, 25MHz, 125MHz or GPS (1 pps).
- Save TIE to USB OFF/ON. Insert a USB and select ON to save test results to USB for further analysis of MTIE/TDEV
  with wander analysis PC software provided by VeEX. The USB memory stick must be inserted to the USB port before
  turning on this option.

Press Start to initiate the test. Current, Max, Min and MTIE results are displayed in nanoseconds.

# Wander Measurement Setup and Results

| Up-100T F<br>Wander Mea | 15 🔄 Synce 🛛 🐼 |
|-------------------------|----------------|
|                         | Results        |
| ET:                     | 00/00:01:52    |
| Current TIE             | 2025440 ns     |
| Max +TIE                | 2025440 ns     |
| Min -TIE                | 0 ns           |
| MTIE                    | 2025440 ns     |
|                         | Catura         |

| Setup           |       |   |  |  |
|-----------------|-------|---|--|--|
| Reference Clock | 2Mbps | ◄ |  |  |
| Save TIE to USB | OFF   | ◄ |  |  |

Go back to top

# 12.0 1588v2/PTP

# 12.1 Setup



| Setup - Master-sync |          |   |                  |          |             |
|---------------------|----------|---|------------------|----------|-------------|
| Up-100T             | F (      | ſ | ) 🤘 🗖            | 6        |             |
| Setup               |          |   |                  | <u> </u> | <b>&gt;</b> |
| Mode                | Port     |   | IP               | Stati    | JS          |
| Setu                | o 🛛      |   | Ref. Clo         | ock      |             |
| Clock Mi            | ode      | ł | vlaster-sy       | /nc 🍸    | ▼           |
| Protocol            | Mode     | I | Pv4 UDP          |          | ▼           |
| Master (            | Clock ID | C | 001863fffe007fc0 |          |             |
| Slave Clock ID      |          | C | 001863fffe00006f |          |             |
| Sync Rat            | te       | 3 | 32 pkts/se       | ec - 1   | ▼           |
| Announce Int.       |          | ľ | 1.0 sec 🛛 🔻 🔻    |          |             |
| Domain I            | Vumber   | C | )                |          | ▼           |
|                     |          |   |                  |          |             |
|                     |          |   |                  |          |             |
|                     |          |   |                  |          |             |
| Start               |          |   |                  |          |             |
|                     |          | 3 | lart             |          |             |

| Setup - Slave-emulation |                           |          |  |  |
|-------------------------|---------------------------|----------|--|--|
| Up-100T F 👘 🤇 🌔         | P 🤸 🗖                     |          |  |  |
| Setup                   |                           | - 📀      |  |  |
| Mode Port               | IP                        | Status   |  |  |
| Setup                   | Ref. Clo                  | ock      |  |  |
| Clock Mode              | Slave-emu                 | ulatio 🔻 |  |  |
| Protocol Mode           | IPv4 UDP                  | ▼        |  |  |
| Transfer Mode           | IPv4 Unicast 🛛 🔻          |          |  |  |
| Master Address          | 192.168.0.10              |          |  |  |
| Master Clock ID         | 001863fffe007fc0          |          |  |  |
| Slave Clock ID          | 001863fff <b>e</b> 00006f |          |  |  |
| Sync Rate               | 32 pkts/sec 🛛 🔻           |          |  |  |
| Announce Int.           | 1.0 sec 🛛 🔻 🔻             |          |  |  |
| Lease Duration          | 300 sec                   |          |  |  |
| Domain Number 0         |                           |          |  |  |
| Start                   |                           |          |  |  |

Before proceeding with any tests, please configure the Port and IP connection. Refer to 11.0 SyncE <u>Port</u> and <u>IP</u> sections for further configuration instructions, then continue to Mode Setup. **Reference Clock** configuration instructions can be found in the 11.1.3 SyncE <u>Mode</u> Setup section. Prior to starting the 1588v2 operation, the selected test port must be connected to the network.

#### Go back to top

## 12.1.1 Mode (Test Mode)

- Clock Mode Master-emulation, Master-sync, Slave-emulation and Slave-sync. Please refer to <u>SyncE Mode Setup</u> in 11.0 SyncE for further information on these clock mode types.
- Protocol Mode IPv4 UDP, IPv6 UDP or Layer 2
- Master clock ID this is the MAC address of the TX130M+ in Master sync/emulation mode. The format of the ID is MAC's first 3 byte -- FF -- FE -- last 3 byte. The MAC address can be manually changed in Tool > IP menu.
- Slave clock ID same as above. Note, the clock IDs will be populated once the 1588v2 is synchronized. The TX130M+ in master clock mode supports ONE slave clock only.
- Sync Rate (master or unicast only) The sync packet sending rate for the Master clock.
- Announce Int Interval of the announcement message to be sent by the master clock. Options are 1, 2, 4, 8, and 16 seconds.
- **Domain Number** Enable/Disable. Enabling this feature allows the user to assign a domain number to a slave-master network. The domain number limit is 255.

## Slave-emulation and Slave-sync only options

- **Transfer Mode** Select between Unicast or Multicast mode of the Master Clock. If Unicast is selected, Master Clock's IP address needs to be entered. Master Clock ID and Slave Clock ID are automatically populated once 1588v2 is synchronized between the master and slave clock devices.
- Master Address (unicast only) Tap on the field and use the soft-keyboard to enter the master address.
- Lease duration Set to 300 sec by default

**Test Results - Summary** 

**Test Results - Summary - Details** 

| Up-100T F 🛛 🔞<br>Test Results 🛛 💽 |            | X   |
|-----------------------------------|------------|-----|
| Summary Mess                      | sages Resu | lts |
| Total messages                    | 4379       |     |
| Event message                     | 2174       |     |
| General message                   | 2205       |     |
| CRC error                         |            |     |
| Lost                              |            |     |
| Duplicated                        |            |     |
| Out Of Ordered                    |            |     |
| Un-identified                     |            |     |
|                                   |            |     |
|                                   |            |     |
|                                   |            |     |
|                                   |            |     |
|                                   |            |     |

| Up-100T F 💿 🤸 🗖<br>Test Results 🕞 🛯 5887  | 3   |
|-------------------------------------------|-----|
| Summer Massages Desult                    | 3   |
| To 🕜 Lost                                 |     |
| EV<br>Sync:0<br>GeDelay_Req:0             | Н   |
| CHPDelay_Req:0                            | Η   |
| Lo Pdelay_Resp:0<br>Du Follow_UP:0        |     |
| Delay Respill                             |     |
| OuPdelay_Resp_FollowUP:0<br>Un Announce:0 | ••• |
| Signaling:0<br>Management:0               |     |
| ОК                                        |     |
|                                           | -   |

Note: Tap on the "..." next to the Lost, Duplicated, or Out of Ordered to view detailed error counters.

#### Go back to top

# 12.2 Test Results

The **Summary** screen displays message statistics including the number of **Total messages**, **Event messages**, and **General messages** along with information on **Lost**, **Duplicated** and **Out of Ordered** messages. Tap on the "..." tab to see more detailed message error information. Additional message information is displayed on the **Messages** screen.

Tap on the **Results** tab to access histogram and **PDV**, **RTD** and **IPG** statistics. Tap on the **NEXT** tab to view additional Data statistics. Pressing the "-t" or"+t" respectively decreases or increases the time frame on the histogram, as shown in the PDV Test Result screens below.

**PDV** - Delay Request, Asymmetry, and Sync PDV min and max information.

**RTD** - RTD and Delay Response RTD min and max information.

**IPG** - Sync and Delay Response IPG min and max information.

Test Results - Summary

PDV Test Results (0-3:20)

PDV Test Results (3:21-6:41)

|                  |                             | Up-100T F<br>Test Results | P 🖌 🗉                                 |          | Up-100T F<br>Test Results | P 🖌 🗖<br>5 S 1588 |          |
|------------------|-----------------------------|---------------------------|---------------------------------------|----------|---------------------------|-------------------|----------|
| Summary Mess     | s <mark>ages</mark> Results | Summary                   | Messages                              | Results  | Summary                   | Messages          | Results  |
| Announce         | 97                          | PDV                       | RTD                                   | IPG      | PDV                       | RTD               | IPG      |
| Sync             | 97                          | Sync PDV                  | 99                                    | ns       | Sync PDV                  | 42                | ns       |
| FollowUp         | 97                          | Sync PDV r                | nin O I                               | าร       | Sync PDV (                | min 0 r           | าร       |
| Delay_Resp       | 92                          | Sync PDV r                | n <b>a</b> x 21                       | .542 us  | Sync PDV (                | max 21            | .542 us  |
| Pdelay_Req       |                             | 1000 ns                   |                                       |          | 1000 ns                   |                   |          |
| Signalling       |                             |                           |                                       |          |                           |                   |          |
| Delay_Req        | 92                          |                           |                                       |          |                           |                   |          |
| Pdelay_Resp      |                             | U V.I                     | n.h                                   |          |                           |                   |          |
| Pdelay_Resp_Foll |                             | 1 \\                      | Mante .                               | A        |                           |                   |          |
| Management       |                             |                           | <del>T With Al</del> t                |          |                           |                   |          |
|                  |                             |                           | · · · · · · · · · · · · · · · · · · · | WVTWWI   | MMA                       |                   |          |
|                  |                             | 00:00:00                  |                                       | 00:03:20 | 00:03:21                  |                   | 00:06:41 |
|                  |                             | -t                        | +t                                    | NEXT     | -t                        | +t                | NEXT     |

## **RTD Test Results**

| Up-100T F    | 🕞 🕑 🤘        |     |          |
|--------------|--------------|-----|----------|
| Test Results | <b>S</b> 158 | 8   |          |
| Summary      | Message      | s   | Results  |
| PDV          | RTD          |     | IPG      |
| Delay_Resp   | RTD          | 9.3 | 334 ms   |
| Delay_Resp   |              |     |          |
| Delay_Resp   | RTD max      | 61  | .904 ms  |
| 100 ms       |              |     |          |
|              |              |     |          |
|              |              |     |          |
|              |              |     |          |
|              |              |     |          |
| What         | }            |     |          |
| 100          | Ŷ            |     |          |
| 00:03:21     |              |     | 00:06:41 |
| -t           | +t           |     | NEXT     |

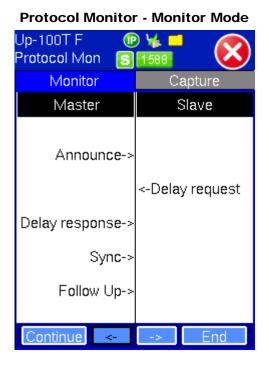
# Go back to top

# **12.3 Protocol Monitor**

The Tracer shows the 1588v2 messages from both Master and Slave clock devices. The TX130M+ stores up to 2000 messages. There are 4 function keys:

- Pause/Continue to pause or continue the tracer.
- -> & <- in Pause mode, use the key to page up or page down.
- End in Pause mode, use End key to jump to the end of the trace.

To view decoded messages, press **Pause** to pause the protocol tracer and tap on the desired message to view decoded message details.


Tap on the Capture tab then hit **Start** to capture packets. The Capture function can store up to 20,000 messages. The messages are saved in pcap format and can be viewed on wire shark for future analysis.

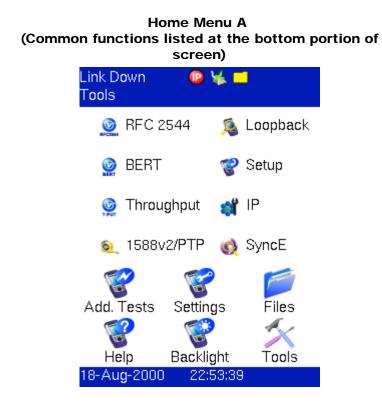
For Clock and Wander Measurement Results, please refer to <u>11.2 Clock Measurements (SyncE</u>) and <u>11.3 Wander</u>

# **IPG Test Results**

| Up-100T F<br>Test Results | (P) 🖌<br>S 158 |    | 8         |
|---------------------------|----------------|----|-----------|
| Summary                   | Message        | s  | Results   |
| PDV                       | RTD            |    | IPG       |
| Sync IPG                  |                | 36 | 6.726 ms  |
| Sync IPG m                |                | 84 | 13.008 us |
| Sync IPG m                | ax             | 20 | 10.964 ms |
| 100 ms                    |                |    | 00:06:41  |
| -t                        | +t             |    | NEXT      |

# Measurements Setup.




**Protocol Monitor - Message Details** 

| Up-100T F       | - (      | D 🤸 💶 🛛 🧑                 |  |  |
|-----------------|----------|---------------------------|--|--|
| Protocol N      | /lon 🛛 💽 | ] 1588 🛛 🌄                |  |  |
| message]        | Гуре     | Delay response            |  |  |
| transportS      | Specific | 0x0                       |  |  |
| versionPT       | P        | 0x2                       |  |  |
| messagel        | ength    | 54                        |  |  |
| domainNumber    |          | 0                         |  |  |
| flags           |          | 0x0                       |  |  |
| C Field 0x00000 |          | 000000000000              |  |  |
| SRC PID         | 0x00188  | 63fff <b>e</b> 00006f0001 |  |  |
| sequenceID      |          | 716                       |  |  |
| controlField    |          | 0x3                       |  |  |
| logMsg1nt       | erval    | 0                         |  |  |
|                 |          |                           |  |  |

Page 1 of 2 Solution

Go back to top

# **13.0 Common Functions**



The following functions, (Chapters 13.1-13.6) are functions common to all V100+ test sets. Please refer to the V100+ Common Functions Manual for these sections. The sections are renumbered in the V100+ Common Functions Manual as follows:

- 13.1 Additional Tests: (5.2) Net Wiz
- 13.2 (6.0) Settings

- 13.3 (7.0) Files
- 13.4 (8.0) Help
- 13.5 (9.0) Backlight
- 13.6 (5.0) Tools

# 14.0 V-SAM

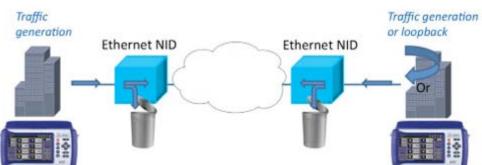
V-SAM (found under Additional Tests) Link Down Tools

# 16-Jan-2012 1<u>5:14:35</u>

# Note: To access V-SAM, go to Home > Add. Tests > V-SAM.

V-SAM (VeEX Service Activation Methodology) is an automated Ethernet service activation test feature conforming to the ITU-T Y.1564 standard, created to address and solve the deficiencies of RFC 2544:

- RFC2544 was limited to test at the maximum throughput line rate for a single service. SAM is able to run multiple services on a single 10/100/1000 or 10G Ethernet line at a bandwidth ranging from 0 to the line rate, allowing for more realistic stream testing.
- The Frame Delay Variation, also known as (packet) jitter was not included in RFC2544. Jitter is a critical parameter for real time voice and video services. It is now part of the SAM test suite.
- RFC2544 validates the service parameters like frame loss, throughput and latency, one after the other, while SAM allows testing all the service critical parameters simultaneously. This results in significant time saving compared to RFC2544.


# Comparison of RFC2544 and Y.1564

|                    | RFC2544                          | Y.1564                                     |
|--------------------|----------------------------------|--------------------------------------------|
| Key Test Objective | Device performance               | Network Service<br>verification/activation |
| Service validation | One service at a time            | Multiple services simultaneously           |
| Throughput         | Yes                              | Yes                                        |
| Latency            | Yes                              | Yes                                        |
| Frame Loss         | Yes                              | Yes                                        |
| Burstability       | Yes                              | Yes                                        |
| Packet Jitter      | No                               | Yes                                        |
| Multiple Streams   | No                               | Yes                                        |
| Test Duration      | Long (serialized test procedure) | Short (simultaneous test/service)          |
| Test Result        | Link performance limit           | Related to SLA, fast, simple,<br>Pass/Fail |

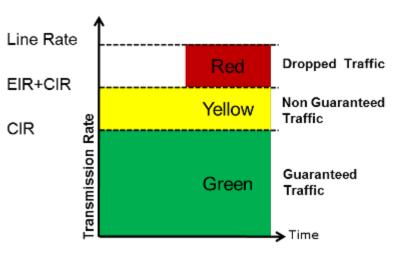
# Test Methodology

The purpose of the SAM test suite is to verify that the service is compliant to its Bandwidth Profile and Service Acceptance Criteria. The test is broken down into two phases:

- Phase 1: Service Configuration test: The services running on the same line are tested one by one to verify the correct service profile provisioning.
- **Phase 2: Service Performance test**: The services running on the same line are tested simultaneously over an extended period of time, to verify network robustness.



#### **Test Application**


#### **Phase 1: Service Configuration Test**

The service configuration test is broken down into three steps. The steps are tested individually for all the services delivered on the same line.

- Step 1: Committed Information Rate (CIR) Test: Traffic is transmitted at the CIR for a short period of time and the received traffic is evaluated against the Service Acceptance Criteria (FLR, FTD, FDV) measured simultaneously. The CIR test passes if the measurements on the received traffic stay below the performance objectives.
- Step 2: Excess Information Rate (EIR) Test: Traffic is transmitted at the CIR+EIR rate for a short period of time; the EIR test passes if the received traffic rate is between the CIR (minus the margin allowed by the FLR) and CIR+EIR.
- Step 3: Traffic Policing (Overshoot Test): The purpose of the Traffic Policing Test is to ensure that when transmitting at a rate higher than the allowed CIR+EIR, the excess traffic will be appropriately blocked to avoid interference with other services. For this test, traffic is transmitted at 25% higher than the CIR+EIR for a short period of time. The test passes if the received traffic rate is at least at the CIR (minus the margin allowed by the FLR) but does not exceed the allowed CIR+EIR.

V-SAM Sorvicos Summary

• At this time the **Committed Burst Size (CBS)** and **Excess Burst Size (EBS)** tests are considered experimental and not an integral part of the standard.



# Service Bandwidth Profile

# Phase 2: Service Performance Test

V-SAM Sotup (Dago 1)

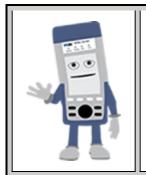
Services running on the same line are tested simultaneously over an extended period of time, to verify network robustness. Service Acceptance Criteria (SAC) including Frame Transfer Delay (FTD), Frame Delay Variation (FDV), Frame Loss Ratio (FLR) and Availability (AVAIL) are verified for each service.

| V-SAM Setup (Page 1)     |            | Step Load Test                      |                | V-SAM Services Summary                       |        |        |          |
|--------------------------|------------|-------------------------------------|----------------|----------------------------------------------|--------|--------|----------|
| Link Down 🛛 😰 🗕<br>V-SAM | - 🗸        | Link Down 🛛 🕼<br>V-SAM              | 🕹              | Link Dowr<br>V-SAM                           |        |        | ✓        |
| Setup Results            |            | Setup Results                       |                | Summary Bandwidth per Service                |        |        |          |
| General Service          | es Control | General Serv                        | vices Control  | Service#                                     |        | EIR    | Traffic  |
| Profile                  | Save 🔻     | CIR Test Config.                    | Simple and 🛛 💙 |                                              | (Mbps) | (Mbps) | Policing |
| # of Services            | 8 🔻        | Step 1 (% of CIR)                   | 25             | ☑ 1                                          | 1.000  | 0.000  | Yes      |
| Configuration Test       | Enable 🔻   | Step 2 (% of CIR)                   | 50             | <b>2</b> 2                                   | 1.000  | 0.000  | Yes      |
| Config. Test Step        | 10 seconds | Step 3 (% of CIR)                   | 75             | <b>⊠</b> 3                                   | 1.000  | 0.000  | Yes      |
| Performance Test         | Enable V   |                                     | 100            | ☑ 4                                          | 1.000  | 0.000  | Yes      |
| Perf. Test Duration      | · · ·      |                                     |                | ☑ 5                                          | 1.000  | 0.000  | Yes      |
| Fen. Test Duration       | 15-min 🔻   |                                     |                | ☑ 6                                          | 1.000  | 0.000  | Yes      |
|                          |            |                                     |                | ☑ 7                                          | 1.000  | 0.000  | Yes      |
|                          |            | Step Load Test is only performed if |                | ☑ 8                                          | 1.000  | 0.000  | Yes      |
|                          |            | the Simple Validation test fails.   |                | Total IR(CIR+EIR):8.00Mbps(8.11M<br>bps ULR) |        |        |          |
| O Page 1 c               | of 2 💿     | <ul> <li>Page</li> </ul>            | 2 of 2 💿       |                                              | C      | К      |          |

#### V-SAM Setup (Page 2) - Simple and Step Load Test

# Go back to top

# 14.1 V-SAM Setup


# General (Page 1)

- Profile Default, Save, Save as New
- # of Services Select the number of services to run. Up to 8 services can be chosen for a 1 GE interface and up to 10 services can be chosen for a 10 GE interface.
- Configuration Test Enable or Disable the configuration test.
- Configuration Test Step Specify min and max duration for the configuration test step.
- Performance Test Enable or Disable the performance test.

**Perf. Test Duration** - Selections are 15 min, 30 min, 1 hour 2 hours, 24 hours, and user defined. User defined enables the user to specify min and max duration for the performance test.

# General (Page 2)

- CIR Test Config. Select Simple Test, Step Load Test, or Simple and Step.
  - Simple Test Starts the tests at the CIR.
  - Step Load Test Starts the test below the CIR and continues in steps until it reaches the CIR.
  - Simple and Step Load Test Step Load Test performs only if the Simple Validation test fails.
- Step # Tap on the corresponding box to enter the percentage of CIR that the test will reach for each step.



# V-SAM Services Summary

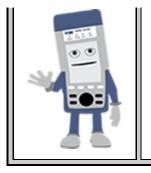
Once setup parameters are completed, tapping the zoom function at the bottom right hand side of the screen displays a summary of all service settings. A check next to the Service number indicates that the test for the corresponding service is set to run. Tap on the box to remove the check and cancel the test for that service.

# V-SAM Services - Header - Selecting a Stream

| Up-1000T F<br>V-SAM | 🕑 🦌 🗖       |                                    |
|---------------------|-------------|------------------------------------|
| Stream              | #           | oulto<br>otrol                     |
| Ger<br>He:          |             | S 1 <sup>htrol</sup><br>S 1 sholds |
| Serv                |             | S 2                                |
| TES<br>Frame Type   | Ethernet II | S3 ▼<br>(Xוס)                      |
| VLAN                | Off         | V                                  |
| MAC                 | Data        | C.D.C.L                            |
| MAC                 | Data        | CRC                                |
|                     |             |                                    |
|                     | Сору        | ٩                                  |

## Go back to top

# 14.1.1 Header Settings


Please see <u>8.1 RFC 2544 Setup</u> and follow the setup procedure to configure the Header Settings for V-SAM. Tapping the zoom function on the bottom right hand side of the screen displays the Summary, MAC and RX Filter tabs which are also explained in the RFC 2544 Setup section. The user can assign a name to each stream by tapping on the **Service Name** box and entering a name.

# Selecting a Stream

On the Services tab, tap on the stream number (S #) next to the Action Menu icon to select a service to configure.

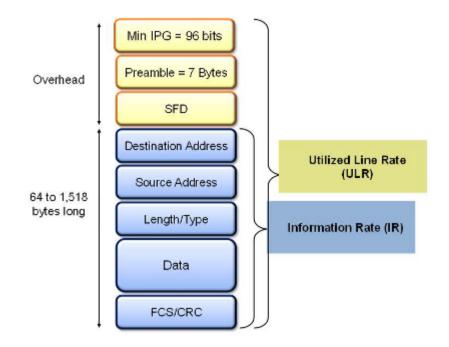
# V-SAM Header Configuration

| Up-1000T F                                                                                                                                                                                                       |           | ) 🤸 🛛 |     |   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|-----|---|--|--|--|
| V-SAM                                                                                                                                                                                                            |           |       | S 2 |   |  |  |  |
| Header Configuration                                                                                                                                                                                             |           |       |     |   |  |  |  |
| UDP                                                                                                                                                                                                              | RX Filter |       |     |   |  |  |  |
| Summary                                                                                                                                                                                                          | - M/      | AC 👘  |     | P |  |  |  |
| MAC Source:00-18-63-43-01-02<br>MAC Dest.:00-18-63-00-8F-1A<br>Ethernet Type:0800-IP<br>IP TOS:Precedence=000-Routine,<br>Values=0000-Normal Service, etc.<br>IP TTL:128<br>Fragment Offset=0<br>Q Page 1 of 2 Q |           |       |     |   |  |  |  |
|                                                                                                                                                                                                                  | 0         | K     |     |   |  |  |  |



# V-SAM Services - Bandwidth

| Up-1000T F<br>V-SAM | . @  | 0 🦌 🛛  | S2         |  |
|---------------------|------|--------|------------|--|
| Setup               |      |        | Results    |  |
| General             | Serv | /ices  | Control    |  |
| Header              | Band | dwidth | Thresholds |  |
| Frame Size          | Fixe | ed     | ▼          |  |
| Frame Size          | 151  | 8      |            |  |
| CIR                 | 1.00 | )      | IR Mbps 🔻  |  |
| EIR                 | 0.00 | )      | IR Mbps▼   |  |
| Traf. Policing      | Ena  | able   | ▼          |  |
| CBS                 | 20K  | В      | Disable 🔻  |  |
| EBS                 | 20K  | В      | Disable 🔻  |  |
| Color Mode          | Dis  | able   | ▼          |  |
|                     |      |        |            |  |
|                     | C    | ору    |            |  |


### Go back to top

### 14.1.2 Bandwidth Profile

The Bandwidth Profile specifies how much traffic the customer is authorized to transmit and how the frames are prioritized within the network. Under the Bandwidth tab, the user specifies the following bandwidth criteria:

- Frame Size Input a fixed frame size within the range of 64-10000 bytes.
- **CIR** Committed Information Rate. This is the guaranteed maximum rate at which the customer can send frames that are assured to be forwarded through the network without being dropped. Tap on the box to enter a rate and choose between **IR Mbps** or **ULR Mbps**. Allowed values range from 0.01Mbps to the line bandwidth.
  - Information Rate (IR) Measures the average Ethernet frame rate starting at the MAC address field and ending at the CRC.
  - Utilized Line Rate (ULR) Measures the average Ethernet frame rate starting with the overhead and ending at the CRC.

V-SAM Services - Header



- Excess Information Rate (EIR) Maximum rate above the CIR at which the customer can send frames that will be forwarded on a best effort basis, but may be dropped in the event of congestion within the network. The combined CIR and EIR must not exceed the line bandwidth. Traffic beyond CIR + EIR will be dropped when it enters the carrier's network. Tap on the box to enter a rate. EIR is expressed in terms IR Mbps or ULR Mbps. Select a term to express EIR or select Disable to disable the test.
- **Traf. Policing** Enable or Disable the traffic policing test. For this test, traffic is transmitted at 25% higher than the CIR+EIR. The Policing test fails if the higher traffic rate is allowed through the network.
- CBS, EBS, and color mode are currently not supported with this release.

| Up-1000T F<br>V-SAM | . 🕑 🤸 🗖   | S 2        |
|---------------------|-----------|------------|
| Setup               | F         | Results    |
| General             | Services  | Control    |
| Header              | Bandwidth | Thresholds |
| FLR                 | 0.1       | % 🔻        |
| FTD                 | 10.000    | ms 🔻       |
| IFDV                | 1.000     | ms 🔻       |
| AVAIL               | 99.900    | % 🔻        |
|                     |           |            |
|                     |           |            |
|                     |           |            |
|                     |           |            |
|                     |           |            |
|                     | Сору      |            |

# Between Services

**Copying Frame Configurations** 

### **V-SAM Services - Thresholds**

### Go back to top

### 14.1.3 Thresholds

The user establishes Pass/Fail test criteria for the following Service Acceptance Criteria. Values define the minimum requirements to ensure that the service meets the Service Level Agreement (SLA):

• FLR - Ratio of lost frames to the total transmitted frames.

FTD - Measures the transfer time that the frames can take to travel from source to destination. Values are measured in us, ms, or sec. Input a value within the digital range of .001-999 and 1 us-999sec. The user can also choose to Disable the FTD threshold evaluation. FTD will be measured regardless, but the value will not contribute toward passing or failing the service.

- IFDV Measures the frame jitter.
- AVAIL Minimum percentage of service availability allowed to still be compliant with the SLA. The service becomes unavailable if more than 50% of the frames are errored or missing in a one second interval. Availability is only guaranteed for traffic conforming to the CIR. Enter a percentage from 0-100. The user can also choose to **Disable** the AVAIL threshold evaluation. AVAIL will be measured regardless, but the value will not contribute toward passing or failing the service.

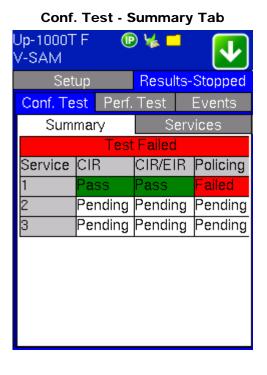


# **Copying Services**

Tap on the **Copy** button on the bottom of any of the **Services** tabs (Header, Bandwidth, Threshold) to copy frame parameters specific to that tab to other services. For example, pressing Copy on the Header tab will only transfer header parameters to other services.

### **Control Settings**

Please see 7.1.4 Control Settings for information on setting up a remote connection with another unit. Note that Asymmetric Mode, mentioned in that section, is unavailable for V-SAM Control settings.


### Go back to top

### 14.2 Results

### **Configuration Test**

Note: To run the test, make sure that traffic is being looped back at the far end of the network under test.

The **Summary** tab displays the status of each service and test as **Pass**, **Failed**, **Pending**, or **Disabled**. Tapping on Services displays live values for FLR, FTD, and FDV as the test is running. If any measured values do not meet the service test parameters set in the Bandwidth and Threshold tabs, the test fails. The zoom function on the bottom right side of the screen displays detailed results for each stream.



| Conf. Test - Services Tab |               |                        |               |  |  |  |
|---------------------------|---------------|------------------------|---------------|--|--|--|
| Up-1000T<br>V-SAM         | F 🕕           | ) 🤸 <mark></mark><br>S |               |  |  |  |
| Setu                      | ιp            | Results-Stopped        |               |  |  |  |
| Conf. Tes                 | st Perf.      | Test                   | Events        |  |  |  |
| Sumn                      | nary          | Serv                   | vices         |  |  |  |
| Se                        | rvice#1       | Failed                 |               |  |  |  |
|                           | CIR           | CIR/EIR                | Policing      |  |  |  |
| Status                    | Pass          | Pass                   | Failed        |  |  |  |
| Duration                  | 40s <b>ec</b> | 10sec                  | 10s <b>ec</b> |  |  |  |
| IR Mbps                   | 99.996        | 129.998                | 137.494       |  |  |  |
| FLR(%)                    | 0.0           | 0.0                    | 0.0           |  |  |  |
| FTD(ms)                   | 0.006         | 0.006                  | 0.006         |  |  |  |
| FDV(ms)                   | 0.000         | 0.000                  | 0.000         |  |  |  |
|                           |               |                        | ٩             |  |  |  |

# S1 Detailed Results - CIR Test S1 Detailed Results - CIR/EIR Test

S1 Detailed Results - Policing Test

| Up-1000T F P S C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                         | Up-1000T F P S C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                | Up-1000T F P V-SAM S1                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CIR Test         CIR/EIR Test         Policing           Step 1         Step 2         Step 3         Step 4                                                                                                                                                               | CIR Test CIR/EIR Test Policing<br>Total                                                                                                                                                                                                                           | CIR Test CIR/EIR Test Policing<br>Total                                                                                                                                                                                                                                                                                                                          |
| Step1 CIR Test: Pass<br>ET:00:00:40                                                                                                                                                                                                                                        | CIR/EIR Test: Pass<br>ET:00:00:10                                                                                                                                                                                                                                 | Policing Test: Failed<br>ET:00:00:10                                                                                                                                                                                                                                                                                                                             |
| Min         Mean         Max           IR Mbps         24.992         24.993         24.993           FTD(ms)         0.006         0.006         0.006           FDV ms         0.000         0.001         0.001           FL Count         0         FLR(%)         0.0 | Min         Mean         Max           IR Mbps         129.995         129.998         130.004           FTD(ms)         0.006         0.006         0.006           FDV ms         0.000         0.001           FL Count         0           FLR(%)         0.0 | Min         Mean         Max           IR Mbps         137.490         137.494         137.502           FTD(ms)         0.006         0.006         0.006           FDV ms         0.000         0.001         0.001           FL Count         0         0.00         FLR(%)         0.00           TX Rate(Mbps)         137.494         137.494         0.00 |
| OK                                                                                                                                                                                                                                                                         | OK                                                                                                                                                                                                                                                                | OK                                                                                                                                                                                                                                                                                                                                                               |



# **Viewing Test Results on Different Streams**

On the Services tab of **Conf. Test** and **Perf. Test**, tap on the service number (S #) next to the Action Menu icon to view the test results for a specific stream.

**CIR test**: The test passes if all measured values are below the thresholds configured. If a threshold is disabled, it will not be evaluated towards pass/fail criteria.

**CIR/EIR test**: The test passes if the received IR value is between the CIR (minus the margin allowed by the FLR) and CIR+EIR.

**Policing test**: The test passes if the received traffic rate is at least at the CIR (minus the margin allowed by the FLR) but does not exceed the allowed CIR+EIR.

CIR, CIR/EIR Test, and Policing tabs display min, mean, and max values for IR Mbps, FTD, FDV, FL Count, and FLR (%). If Step Load was selected for the CIR Test, these values will be displayed for each step.

### Performance Test

The **Summary** tab displays the status of each service and test as Pass, Failed, or Pending. Tapping on **Services** displays live values for the following parameters as the test is running:

### Page 1

- **IR Mbps** Information Rate. Measures the average Ethernet frame rate starting at the MAC address field and ending at the CRC.
- FTD Measures the transfer time that the frames can take to travel from source to destination.
- FDV Measures the frame jitter.
- FL Count Counts the number of lost frames.

FLR - Ratio of lost frames to the total transmitted frames.

• AVAIL - Minimum percentage of service availability allowed to still be compliant with the SLA. The service becomes unavailable if more than 50% of the frames are errored or missing in a one second interval. Availability is only guaranteed for traffic conforming to the CIR.

### Page 2

- Severely Errored Sec (SES) Occurs for a block of frames over a one-second interval, when more than 50% of the frames are errored or missing.
- **Unavailable Sec** An interval of time that begins at the start of 10 consecutive SES occurrences. The ethernet network is in unavailable state during this time span.
- Total RX Frames Total number of frames received
- number of Out of Sequence Counts
- Errored Frame Count Number of frames with CRC or IP Checksum errors

Measured values that do not meet the service test parameters set in the Bandwidth and Threshold tabs cause the test to fail.

| Perf. Test                    | - Summa           | ary                   | Perf. Te                      | st - Sei           | rvices (I               | Page 1)  | Perf. To                           | est - Ser                           | vices      | (Page 2) |
|-------------------------------|-------------------|-----------------------|-------------------------------|--------------------|-------------------------|----------|------------------------------------|-------------------------------------|------------|----------|
| Up-1000T F (<br>V-SAM         | D 🧏 🗖             | ✓                     | Up-1000T F<br>V-SAM           | - (                | ) 🤸 <mark>-</mark><br>S |          | Link Down<br>V-SAM                 |                                     | ) 🤸 드<br>( | S 1 🕹    |
| Setup                         | Results           | -Stopped              | Setu                          | p                  | Results                 | -Stopped | Seti                               | up                                  | R          | esults   |
| Conf. Test Per                | f. Test 👘         | Events                | Conf. Test                    | t Perf.            | Test                    | Events   | Conf. Tes                          | st Perf.                            | Test       | Events   |
| Summary                       | Ser               | vices                 | Summ                          | ary                | Ser                     | vices    | Sumr                               | nary                                | Se         | ervices  |
| ET:00:00:00<br>Service Status | Pendin<br>IR Mbps | i <b>g</b><br>s AVAIL |                               | iance T<br>T:00:00 | est: Peni<br>:00        | ding     |                                    | m <mark>ance</mark> Te<br>ET:00:00: |            | nding    |
| 1 Pending                     | 0.000             | 100.000               |                               | √lin               | Mean                    | Max      | Severely                           |                                     | Sec        |          |
| 2 Pending                     | J 0.000           | 100.000               | IR Mbps                       |                    |                         |          | Unavaila                           |                                     |            |          |
| 3 Pending                     | 0.000             | 100.000               | FTD(ms)<br>FDV ms<br>FL Count |                    |                         |          | Total RX<br>Out of Se<br>Errored F | eq Count                            | unt        |          |
|                               |                   |                       | FLR(%)<br>AVAILAE             | · · ·              | 6)<br>1 of 2            | 0        | 0                                  | Page                                |            | ۲        |

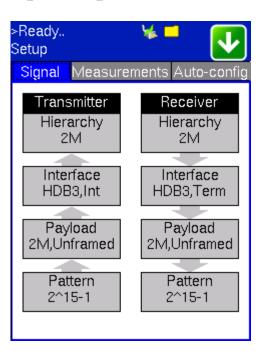
## Events

A time stamped record or log of test types and test statuses (start/stop).

Events

| Up-1000T F<br>V-SAM | œ     | ) 🤘 🗖   | •          |
|---------------------|-------|---------|------------|
| Setup               |       | Resul   | ts-Stopped |
| Conf. Test          | Perf. | Test    | Events     |
| time                | Event | S.      | TEST       |
| 16:59:00            | Test  | Started | V-SAM      |
| 17:00:16            | Test  | Stoppe  | d V-SAM    |
|                     |       |         |            |
|                     |       |         |            |
|                     |       |         |            |
|                     |       |         |            |
|                     |       |         |            |
| O P                 | age 1 | of 1    | ٥          |

# 15.0 Menu B - PDH/Dsn Setup


| PDH/DSn Home Menu |              |            |             |  |  |  |
|-------------------|--------------|------------|-------------|--|--|--|
| >Sto<br>Hon       |              | <b>) 1</b> |             |  |  |  |
| I                 | Setup        | 0          | E1 Tools    |  |  |  |
| ×                 | Results      | 0          | E3 Tools    |  |  |  |
| 0                 | Alarm/ Error | \$         | DS1/3 Tools |  |  |  |
| 0                 | Profiles     | *          | Add. Tests  |  |  |  |
| 18-7              | Aug-2000 2   | 3:12:      | 42          |  |  |  |

To access the Setup application, tap on the Setup icon. This application allows the user to set up the Transmitter and Receiver interfaces and associated test parameters prior to running a test.

The Setup page has three tabs for setting the PDH, DSn (T-Carrier) parameters. The Signal, Measurements and Auto-Config tabs are described below.

### PDH/DSn Signal Setup Menu

Coupling TX and RX





# 15.1 Signal Overview

The Transmitter and Receiver configurations are grouped into a simple yet intuitive block diagram. The Tx and Rx signal parameters can be modified by tapping the applicable block which brings up a new dialog window displaying additional input and specific selection settings. The transmitter transmits as soon as a valid configuration is entered. The receiver will check for a valid signal on its input so the measurement function is synchronized. When a test is not running, the LEDs will still indicate errors and alarms, but any other results displayed will be the results of a previous test.

When the Tx and Rx signal structures are required to be identical or symmetrical, coupling the Transmitter and Receiver is possible. The signal structure can be copied from Tx to the Rx, or vice versa.

Changes to Setup are applied immediately unless an invalid parameter has been selected.

When the Tx and Rx signal structures need to be independent or asymmetrical, uncoupling the transmitter and receiver is possible.

### Go back to top

### 15.1.1 Hierarchy

Tapping the Hierarchy box opens the Hierarchy Setup screen. The screen examples shown in this part of the manual depict and describe the settings for 2M or E1 signals. The options for other bit rates and modes are described in text format.

**High Rate** - In PDH mode, 2Mbit/s, Options are 34Mbit/s and 1.5Mb/s, 45Mbit/s. **Dual** (Rx only) - Dual DS1or E1 Receiver Option ON/OFF; the Receiver 2 set exact same configuration as Receiver 1.

### **Coupled Hierarchy**

| ≻Ready<br>Setup | ¥ <mark>-</mark> | .↓ |
|-----------------|------------------|----|
| H               | Hierarchy        |    |
|                 | R <b>ate</b> 2M  | V  |
| [               | Dual OFF         | V  |



# 15.1.2 Interface

Tap the Interface box to access this feature. Interface allows the user to select clock source. Offset options are also configured in this screen.

# Coupled Interface - External >Ready.. Setup Interface Line Code HDB3 ▼ Clock Src External ▼ Clock Port Unbal RX2 ▼ Clock External 2Mbit/s ▼ Aux Line Code HDB3 ▼ Termination Bridge ▼ Balanced



### Line Code:

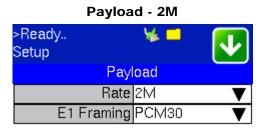
- In E1 mode, the line code options default to HDB3 or AMI. Normal E1 systems use HDB3 line coding while AMI is
  reserved for special applications.
- In E3 mode, the line code defaults to HDB3 only
- In DS1 mode, the line code options default to B3ZS or AMI
- In DS3 mode, the line code is B3ZS, AMI

**Clock Source** (Tx only): Can be configured as follows:

• Internal - The clock for the transmitter is derived from the internal clock. The internal clock has an accuracy of +/- 3.5ppm conforming to G.812 recommendations.

- External
  - **Clock Port** Unbalanced RX2 selected as default.
  - Clock External
  - Aux Line Code HDB3, B8ZS, or AMI
- **Rx** The clock for the transmitter is derived from the received signal and the jitter of the incoming signal is suppressed.
- Offset
  - Clock Offset With the Clock Offset box checked, a custom deviation value of +/- 50ppm can be entered

**Termination** (Rx only): The sensitivity of the receiver can be set for ITU-T/ANSI, Protected Monitoring Points (PMP) or High Impedance connections. The options under the Termination menu are


- **Terminated** The received signal is terminated with a 100ohm impedance enabling the unit to decode the signal over a wide range of cable losses.
- **Monitor** To be used when the measurement is made at a Protected Monitoring Point (PMP) of network equipment. The PMP level can range between -20 and -26dB. The TX130M+ is fully compliant with ITU-T G.772 and relevant sections defining PMP.
- **Bridge** Select this mode for a high impedance monitor test or when the receiver is connected directly in parallel to a DS1 line carrying live traffic. The isolation circuit of the unit protects the DS1 signal from any possible disruption.

**Balanced** (Tx only): Check when using the RJ-45 connectors. The transmitter output impedance will be set to 120 ohms. The Primary test port is "1" on top panel. If unchecked, the unit will assume that testing is taking place on the 75ohm unbalanced BNC TX connector for E1 mode.

### Go back to top

### 15.1.3 Payload

Tap the payload box to access this feature. Payload allows the user to configure a low rate signal (if applicable) and associated framing.





### Rate:

In 2M mode, the options are 2M or Fractional E1 (N x64) where:

- 2M: Configures the transmitter for full rate testing at 2,048Mbit/s
- Fractional E1 (N x64): Configures the transmitter for fractional testing using N or M 64kbit/s timeslots. (Contiguous or noncontiguous timeslots)

In E3 (34Mbit/s) mode, the options are 34M or 2M Mux (E3/E1 Mux) or Fractional E1 (Nx64) Mux where:

• 34 M: Configures the transmitter for full rate testing at 34Mbit/s

- 2 M (E3/E1 Mux): Configures the transmitter for full rate testing at 34Mbit/s signal with E1 payloads (1 to 16 channels)
- Fractional E1 (E3/E1Mux w/Nx64): Configures the transmitter for full rate testing at 34Mbit/s signal with E1 payloads (1 to 16 channels) for fractional testing using N or M 64kbit/s timeslots. (Contiguous or noncontiguous timeslots)

In DS1 (1.544 Mbit/s) mode, the options are 1.544M or Fractional DS1(Nx64 or Nx56) where;

- 1.544 M: Configures the transmitter for full rate testing at 1.544Mbit/s
- Fractional DS1 (Nx64 or Nx56): Configures the transmitter for fractional testing using N or M 64kbit/s timeslots. (Contiguous or noncontiguous timeslots)

In DS3 (45Mbit/s) mode, the option are 45M or 1.544M (DS3/DS1 Mux) or Nx64 (DS3/DS1 w/Nx64 Mux) where:

- 45 M: Configures the transmitter for full rate testing at 45Mbit/s
- 1.544 M (DS3/DS1 Mux): Configures the transmitter for full rate testing at 45Mbit/s signal with DS1 payloads (1 to 28 channels)
- Fractional DS1 Mux: Configures the transmitter for full rate testing at 45Mbit/s signal with DS1 payloads (1 to 28 channels) for fractional testing using N or M 64kbit/s timeslots. (Contiguous or noncontiguous timeslots)

### Framing:

In E1 mode, the options are unframed, PCM31, PCM31C, PCM30, and PCM30C. Framing conforms to G.704 and G.706 recommendations and are briefly described below:

- Unframed: No Frame Alignment Signal (FAS) or Multi Frame Alignment Signal (MFAS) is transmitted
- PCM31: Unit transmits a Frame Alignment Signal (FAS)
- PCM31C: Unit transmits a Frame Alignment Signal (FAS) with CRC-4 bits for error checking
- PCM30: Unit transmits a Frame Alignment Signal (FAS) and a Multi Frame Alignment Signal (MFAS)
- PCM30C: Unit transmits a Frame Alignment Signal (FAS) and a Multi Frame Alignment Signal (MFAS) with CRC-4 bits for error checking

In E3 mode, the options are unframed and G.751 (PCM 480)

In DS1 mode, the options are unframed, D4 (SF) and ANSI T1.107 (ESF)

In DS3 mode, the options are unframed, M13 and C-Parity

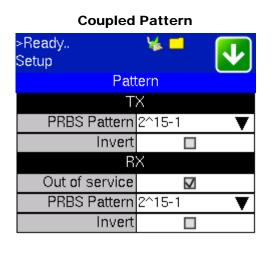
When the Nx64 fractional rate is selected, the following screen is displayed:

|                      |    | Pay  | load  | 1 - N | x64   |    |    |
|----------------------|----|------|-------|-------|-------|----|----|
| >Rea<br>Setu         |    |      |       | 1     |       |    | ↓  |
|                      |    |      | Pay   | load  |       |    |    |
|                      |    |      | Rate  | Nx6   | 4     |    | ▼  |
|                      | E1 | Fra  | ming  | PCN   | /130  |    | ▼  |
| Unused AIS 🛛 🔻       |    |      |       |       |       | V  |    |
|                      |    | Time | eslot | Sele  | ctior | 1  |    |
| 00                   | 01 | 02   | 03    | 04    | 05    | 06 | 07 |
| 08                   | 09 | 10   | 11    | 12    | 13    | 14 | 15 |
| 16                   | 17 | 18   | 19    | 20    | 21    | 22 | 23 |
| 24                   | 25 | 26   | 27    | 28    | 29    | 30 | 31 |
| Clear All Select All |    |      |       |       |       |    |    |

Framing: Options are PCM31, PCM31C, PCM30, and PCM30C per G.704 and G.706 recommendations same as E1 described above.

**Note:** Unframed signal types are not supported in the Nx64 fractional mode because framing is required to determine the location of timeslots.

Unused: AIS, Broadcast, Unequipped used to fill up the unused (idle) timeslots


**Timeslot Selection:** Select the timeslot by tapping the applicable box. Deselect the timeslot by tapping the box again.

**Note:** Timeslots 1-31 correspond to channels 1-31 when using PCM-31 framing. When using PCM-30 framing, timeslots 1-15 correspond to channels 1-15, while timeslots 17-31 correspond to channels 16-30. Timeslot 16 is used for the Multi Frame Alignment Signal.

### Go back to top

### 15.1.4 Pattern

Tap on the pattern box to access this feature. The test patterns can be applied to all PDH/DSn rates; however, ITU-T recommends certain sequences dependent on the bit rate under test.



| Close |
|-------|
|-------|

**Pattern**: Use the pattern drop down box to select the test pattern which will be inserted into the transmitted signal. Pseudo Random Bit Sequences (PRBS) defined by ITU-T 0.150 and 0.151 standards, fixed words and 24-bit or 32 bit user defined patterns are available. Note, if the 32 bit user pattern entered is incorrect, the default pattern will be 0xFFFFFFF.

Invert: Inversion of polarity is available.

**Out of Service** (Rx only): Should be selected if the incoming signal is expected to contain a known test pattern. Deselect this option if signal is expected to contain live network traffic, this will disable the pattern detection process and will enable the reporting of LSS.

Note: ITU-T specification 0.150 recommends the following test patterns:

| Test Sequences for PDH/DSn signals according to ITU-T 0.150 recommendation |       |                                                                         |  |  |  |  |
|----------------------------------------------------------------------------|-------|-------------------------------------------------------------------------|--|--|--|--|
| PRBS                                                                       | Zeros | Application                                                             |  |  |  |  |
| 2^9-1                                                                      | 8     | Error measurements for bit rates ≤ 14,400 kbits/s                       |  |  |  |  |
| 2^11-1                                                                     | 10    | Error & jitter measurements for bit rates of n x 64 kbit/s & 64 kbits/s |  |  |  |  |
| 2^15-1                                                                     | 15    | Error & jitter measurements for T1, E1 and DS3 bit rates                |  |  |  |  |
| 2^20-1                                                                     | 14    | Error & jitter measurements for T1, E1 and DS3 bit rates                |  |  |  |  |
| 2^23-1                                                                     | 23    | Error & jitter measurements for DS3 bit rates                           |  |  |  |  |
| 2^31-1                                                                     | 31    | Delay measurements for DS3 bit rates                                    |  |  |  |  |

### Warning Message

While a test is running, it is possible to view the signal configuration, but it is not possible to change the setup or modify other measurements settings on the fly. This warning screen is only shown during initial setup to alert the user.

### Go back to top

## **15.2 Measurement Configuration**

Tapping the Measurements box opens the setup screen for the Timer, Performance Analysis and General configurations.

| weasurement - Timed would |          |       |             |
|---------------------------|----------|-------|-------------|
| >Ready<br>Setup           |          | ¥ -   |             |
| Signal                    | Measure  | ments | Auto-config |
| Timer                     | Analy    | sis   | General     |
|                           | Mode     | Timed | V           |
|                           | Dura     | ation |             |
|                           | Duration |       | 10          |
|                           | Units    | Secor | nds 🔻       |
|                           |          |       |             |
|                           |          |       |             |
|                           |          |       |             |
|                           |          |       |             |
|                           |          |       |             |
|                           |          |       |             |
|                           |          |       |             |
|                           |          |       | •           |

# Measurement - Timed Mode

### Go back to top

### 15.2.1 Timer Setup

Configure a test to run for a fixed duration or a delayed start.

Mode: Manual, Timed and Auto selections are available

- Manual: This is linked to the Start/Stop function on the pull-down menu
- **Timed:** The test duration can be set by the user. The test duration can be set in seconds, minutes, hours or days. The test is activated by the Start/Stop function on the pull-down menu
- Auto: A predetermined start time can be set by the user. The test duration can be set in seconds, minutes, hours or days. After programming the start time and duration, press the Start button on the pull-down menu and the test will be activated automatically when the programmed start time is reached.

Note: The timed mode will be required when running a M.2100 performance

# Go back to top

# 15.2.2 Performance Analysis

The Analysis setup page selects the ITU-T performance test that will be performed by the unit. The selections include None, G.821, G.826 and M.2100. The recommendations are briefly defined as follows:

| Measurements - Analysis |            |                      |             |  |
|-------------------------|------------|----------------------|-------------|--|
| >Ready<br>Setup         |            | ¥ -                  |             |  |
| Signal                  | Measure    | m <mark>en</mark> ts | Auto-config |  |
| Timer                   | Analy      |                      | General     |  |
| Perfo                   | ormance    | M.210                | 0 🔻         |  |
|                         | lierarchy  | oos                  | ▼           |  |
|                         | llocation  |                      | 100.00      |  |
| BISO                    | Multiplier |                      | 1.00        |  |
|                         |            |                      |             |  |
|                         |            |                      |             |  |
|                         |            |                      |             |  |
|                         |            |                      |             |  |
|                         |            |                      |             |  |
|                         |            |                      |             |  |
|                         |            |                      |             |  |
|                         |            |                      |             |  |

# G.821: Error performance of an international digital connection operating at a bit rate below the primary rate and forming part of an Integrated Service Digital Network (ISDN)

- Long term error performance Conducted Out of Service (OOS)
- Based on measuring bit errors
- Evaluation period of 30 days
- Since there is no overhead structure at these bit rates, in-service measurements are extremely difficult
- **G.826**: End-to-end error performance parameters and objectives for international, constant bit rate digital paths and connections.
  - Long term error performance for Out of Service (OOS) and In-Service Measurement (ISM)
  - Based on measuring bit errors for connections and block errors for paths
  - Evaluation period of 30 days
- M.2100: Performance limits for bringing into service and maintenance of international multi-operator PDH paths and connections
  - Deals exclusively with PDH paths, sections and systems
  - Based on measuring bit errors and block errors
  - BIS limits for OOS/ISM
  - Evaluation periods of 15 minutes, 2 hours and 24 hours
  - First step is a continuity test for 15 minutes
  - PDH paths are composed of sub-elements of different lengths each with its own set Reference Performance Objectives (RPO)

**Note:** Only one performance analysis can be performed at a time. To view or enable the M.2100 analyses, the measurement timer has to be set to a determined

# Go back to top

# 15.2.3 General

The General setup page configures the Audible Alarm and Auto Save settings.

# Measurements - General

| >Ready<br>Setup |            | ¥ -                  | •           |
|-----------------|------------|----------------------|-------------|
| Signal          | Measure    | m <mark>en</mark> ts | Auto-config |
| Timer           | Analy      | 'sis                 | General     |
| Audik           | ole Alarm  | OFF                  | V           |
|                 | s on start |                      | V           |
| A               | uto Save   |                      | V           |
|                 | Events     | Blocke               | ed 🔻        |
|                 |            |                      |             |
|                 |            |                      |             |
|                 |            |                      |             |
|                 |            |                      |             |
|                 |            |                      |             |
|                 |            |                      |             |
|                 |            |                      |             |
|                 |            |                      |             |

- Audible Alarm: On or Off. Provides an audible indication when alarm or error condition is recorded.
- Results on start: On or Off. Provides an automatic move to results screen when it starts
- Auto Save: The Automatic Save results file. Tapping the Auto Save set to "ON" will automatically save the results file.
- Measurement Clock Source: Internal Clock or Tx Clock Source; the measurement synchronized to the Tx clock.

# 15.3 Auto-Config

The Auto-Configuration function is described below.

| -Stoppec<br>Setup | I                           | ₩ =                   | ✓          |
|-------------------|-----------------------------|-----------------------|------------|
| Signal            | Measure                     | ments <mark>Au</mark> | ito-config |
|                   | Auto                        | Config                |            |
| PDł               | HE1 Unba<br>E1 PCM3<br>PRBS |                       |            |
|                   | Start                       | Fast                  |            |

# Setup - Auto Config

The **"Auto-Config"** function automatically sets the receiver of the TX130M+. A search of PDH signals at both the electrical inputs is performed to determine the signal structure. For electrical signals, both Terminated and PMP voltage ranges are searched and supported.

### Procedure

Tap the "Start" button to begin the search. The received signal is checked for network type, hierarchy and bit rate, payload structure, payload framing, test pattern and signal level. If the search is successful, a "PASS" result is displayed.

# Search Parameters and Criteria

- Interface: Checks physical parameters (bit rate line code)
- **Payload:** Only test patterns defined in ITU-T or ANSI standards will be recognized. If no test pattern is detected, the unit assumes live traffic.

**PDH Signals:** Unframed or framed payloads at all hierarchies. For 2M signals containing 64kbit/s timeslots, the TX130+ will assume live traffic and will not search for a test pattern.

# Go back to top

# 16.0 Results

Measurements are accessed by tapping the Results icon in the main menu. The results comprise a range of tabbed pages, similar to the setup pages.

# 16.1 PDH Results

# 16.1.1 Summary

The Summary tab displays an overview of the major test parameters. At a glance, the user is able to see if there are any alarms, errors or signal failure. The selected performance analysis test and its current verdict (Pass or Fail) is also displayed..

| PDH Su              | mmary            |  |  |  |
|---------------------|------------------|--|--|--|
| >Running 📵 🥝        | * - 😼            |  |  |  |
| Signal Analysis     | Histogram Graph  |  |  |  |
| Summary Errors/#    | Alarms Event Log |  |  |  |
| ET:                 | 00/00:01:10      |  |  |  |
| LOS Al <b>a</b> rm  | OK               |  |  |  |
| PDH Alarms          | Alarm            |  |  |  |
| PDH Errors          | Errors detected  |  |  |  |
| LSS Al <b>a</b> rms | OK               |  |  |  |
| Bit Errors          | *                |  |  |  |
| Error(s)            |                  |  |  |  |
| Page 1 of 1_ O      |                  |  |  |  |

## Go back to top

# 16.1.2 PDH Errors/Alarms

The Errors/Alarms tab brings up several pages showing the errors and alarm status. Page 1 of 4 (Dual E1 mode, Page 1 of 6) provides an overview of all the errors and alarms applicable to the signal or network under test. The color of the page tab is normally blue; however, it will turn red when an alarm error condition has been detected or recorded.

The soft LEDs on-screen are arranged logically and will depend on signal hierarchy, structure, payload and framing selected. The soft LEDs have a tricolor function:

- Green: No error or alarm is present
- Red: An error or alarm condition is detected and is currently present
- Yellow: Indicates a history condition. An error or alarm was detected during the measurement interval, but it is no longer present or active

| Errors/Alarms Tab               | Errors/Alarms Tab - Dual E1 Mode |
|---------------------------------|----------------------------------|
| >Running 📵 🔕 🚧 📮 🛛 🚺<br>Results | >Running 📵 🔕 🚧 💻 🚺               |
| Signal Analysis Histogram Graph | Signal Analysis Histogram Graph  |
| Summary Errors/Alarms Event Log | Summary Errors/Alarms Event Log  |
| E1 Pat                          | E1 Pat E1 Pat                    |
| Los                             | Los Los Los                      |
| Ais Bit                         | Ais Bit Ais Bit                  |
| Cod                             | Cod Cod                          |
|                                 |                                  |
|                                 |                                  |
|                                 |                                  |
|                                 |                                  |
|                                 |                                  |
|                                 |                                  |
| 💿 Page 1 of 4 💿                 | 💽 Page 1 of 6 💽                  |

**Note:** Tapping the individual soft LED will automatically link you to the applicable result screen which provides detailed information.

# Go back to top

# Errors/Alarms (Page 2)

Page 2 of 4 lists the alarms in logical order that are associated with the signal under test. All alarms are evaluated and stored. The time resolution of alarms is 100ms.

| ≻Runnin<br>Results | ıg    | ()      | ا 🚧 🔕                 |       | ✔       |
|--------------------|-------|---------|-----------------------|-------|---------|
| Signal             | Ana   | lysis   | Histo                 | gram  | Graph   |
| Summa              | ıry E | irrors/ | 'Al <mark>a</mark> rm | s Eve | ent Log |
|                    |       | PDH     | : [2M]                |       |         |
| ET:                |       |         |                       | 00/0  | 0:01:27 |
| LOS                |       |         |                       |       | Оs      |
| AIS                |       |         |                       |       | 84 s    |
|                    |       |         |                       |       |         |
|                    |       |         |                       |       |         |
|                    |       |         |                       |       |         |
|                    |       |         |                       |       |         |
|                    |       |         |                       |       |         |
|                    |       |         |                       |       |         |
|                    |       |         |                       |       |         |
|                    |       | Page    | 2 of 4                | 1 🕞   |         |

### Errors/Alarms Tab (Page 2)

| >Running<br>Results | 🖲 🔕 🚧 🗖        | •           |
|---------------------|----------------|-------------|
| Signal Ana          | ılysis Histogr | am Graph    |
| Summary E           | rrors/Alarms   | Event Log   |
| PDH                 | Secondary : [  | [2M]        |
| ET:                 | (              | 00/00:00:49 |
| LOS                 |                | 49 s        |
| AIS                 |                | 0 s         |
|                     |                |             |
|                     |                |             |
|                     |                |             |
|                     |                |             |
|                     |                |             |
|                     |                |             |
|                     |                |             |
| ٩                   | Page 4 of 6    |             |

Errors/Alarms Tab (Page 4) - Dual E1 Mode

### Go back to top

### Errors/Alarms (Page 3)

Page 3 of 4 lists the errors in logical order that are associated with the signal under test. All errors are counted simultaneously and stored.



| >Running<br>Results | (B) 🔕 🚧 드       | ✓        |
|---------------------|-----------------|----------|
| Signal Ana          | lysis Histogram | n Graph  |
| Summary E           | rrors/Alarms Ev | vent Log |
| PDH                 | Secondary : [2N | 4]       |
| ET:                 | 00/             | 00:02:01 |
| CODE                | 0               | *        |
|                     |                 |          |
|                     |                 |          |
|                     |                 |          |
|                     |                 |          |
|                     |                 |          |
|                     |                 |          |
|                     |                 |          |
|                     |                 |          |
|                     | Page 5 of 6 💽   |          |

### Errors/Alarms (Page 4)

Page 4 of 4 lists the Bit Error Performance (BERT) associated with the signal under test.

| EITUISIAIAIIIIS TAD (Paye 4) |                    |        |        |        |         |
|------------------------------|--------------------|--------|--------|--------|---------|
| >Runnin<br>Results           | ıg                 | (      | 3 🚧    |        | ✓       |
| Signal                       | Ana                | lysis  | Histo  | gram   | Graph   |
| Summa                        | iry <mark>E</mark> | rrors/ | Alarm  | is Eve | ent Log |
|                              |                    | BE     | ERT    |        |         |
| ET:                          |                    |        |        | 00/0   | 0:01:35 |
| LSS                          |                    |        |        |        | Оs      |
| BIT                          |                    |        |        | 0      | *       |
|                              |                    |        |        |        |         |
|                              |                    |        |        |        |         |
|                              |                    |        |        |        |         |
|                              |                    |        |        |        |         |
|                              |                    |        |        |        |         |
|                              |                    |        |        |        |         |
|                              |                    |        |        |        |         |
|                              |                    | Page   | 4 of - | 4 🕟    |         |
|                              |                    |        |        |        |         |

Frrors/Alarms Tab (Page 4)

### Errors/Alarms Tab (Page 6) - Dual E1 Mode

| >Running<br>Results | 🖲 🔕 🚧 🗖       | · 🗸         |
|---------------------|---------------|-------------|
| Signal Ana          | lysis Histogr | am Graph    |
| Summary E           | rrors/Alarms  | Event Log   |
|                     | BERT          |             |
| ET:                 | ۱ C           | )0/00:02:22 |
| LSS                 |               | 0 s         |
| BIT                 |               | 0 0.0E+00   |
| BE                  | RT Secondar   | У           |
| LSS                 |               | 0 s         |
| BIT                 |               | 0 *         |
|                     |               |             |
| ٩                   | Page 6 of 6   | $\bullet$   |

### Go back to top

### 16.1.3 Event Log

The Event log tab brings up the screen listing the error and alarm events recorded during a test. The events are presented in chronological sequence:

- Number (#): Event number, events are numbered sequentially
- Type: Indicates alarm or error type
- Start: Indicates when the alarm or error was detected
- Dur/Count: Indicates for how long the alarm or error was detected and provides count (alarms) and ratio (errors). The duration format is day:hour:minute:second
- Pages: Scroll through the pages depending on the number of events recorded.

| Event Log       |           |                           |            |  |
|-----------------|-----------|---------------------------|------------|--|
| >Runn<br>Result |           | ) 🔕 🚧 🛛                   | -          |  |
| Signa           | l Analys  | is Histog                 | jram Graph |  |
| Summ            | nary Erro | irs/Al <mark>a</mark> rms | Event Log  |  |
| #               | Туре      | Start                     | Dur/Count  |  |
| 1               | Start     | 21:31:46.                 | 0          |  |
| 2               | CODE      | 21:31:48.                 | 0 1        |  |
| 3               | CODE      | 21:31:49.                 | 0 10       |  |
| 4               | 2M:AIS    | 21:31:49.                 | 6          |  |
| 5               | CODE      | 21:31:50.                 | 0 6        |  |
| 6               |           |                           |            |  |
| 7               |           |                           |            |  |
| 8               |           |                           |            |  |
| 9               |           |                           |            |  |
| Page 1 of 1 (2) |           |                           |            |  |

### 16.1.4 Signal

The Signal tab brings up the Frequency and Level result screen.

| Signal                          |                |  |  |  |  |
|---------------------------------|----------------|--|--|--|--|
| >Stopped (2)<br>Results         | * - 👽          |  |  |  |  |
| Summary Errors/Ala              | arms Event Log |  |  |  |  |
| <mark>Signal</mark> Analysis Hi | stogram Graph  |  |  |  |  |
| Freque                          | ncy            |  |  |  |  |
| 2M current (bps)                | 2048000        |  |  |  |  |
| Offset (ppm):                   | 0.0            |  |  |  |  |
| Min (ppm):                      | -0.5           |  |  |  |  |
| Max (ppm):                      | 0.5            |  |  |  |  |
| Leve                            | :I             |  |  |  |  |
| V(p-p)                          | 4.8 V          |  |  |  |  |
| Page 1                          | of 1 💿         |  |  |  |  |

**Frequency:** The received signal frequency and offset is measured and displayed. For E1 signals, the measurement is performed on both balanced 120ohm and unbalanced 75ohm interfaces.

- Current: Indicates the frequency of the input signal
- Offset: Indicates the difference between the standard rate and the rate of the input signal
- Min (ppm): Indicates the difference between the standard rate and the minimum deviation detected in the input signal
- Max (ppm): Indicates the difference between the standard rate and the maximum deviation detected in the input signal

A Min (ppm) and Max (ppm) function can be used to ensure that the received signal is within a certain clock tolerance and that the network element is transmitting correctly. The frequency limits for the various signal types according to ITU-T recommendations are presented in the table below.

| Frequency Tolerances for PDH and T-Carrier Systems |                      |  |
|----------------------------------------------------|----------------------|--|
| Signal Frequency Specification                     |                      |  |
| E1 PDH                                             | 2.048 Mbps ± 50 ppm  |  |
| E3 PDH                                             | 34.368 Mbps ± 20 ppm |  |
| DS1T-Carrier                                       | 1.544 Mbps ± 30 ppm  |  |
| DS3 T-Carrier                                      | 44.736 Mbps ± 20 ppm |  |

**Level:** Measures the Peak and Peak-Peak voltage values of the incoming signal. The levels for the various signal types according to ITU-T recommendations are presented in the table below.

| PDH Signal Levels per ITU-T G.703 Recommendations |           |           |                                                |                                                                                                                                                            |  |
|---------------------------------------------------|-----------|-----------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Cinnal                                            | Dit Data  | Line and  | Input                                          |                                                                                                                                                            |  |
| Signal                                            | Bit Rate  | Line code | Termination                                    | Level                                                                                                                                                      |  |
| E1                                                | 2 Mbit/s  | HDB3      | 75 ohm unbalanced BNC<br>120 ohm balanced RJ45 | Terminate: 2.37 Volt peak<br>Monitor: 2.37 Volt peak<br>with 20 or 26dB gain<br>Terminate: 3.0 Volt peak<br>Monitor: 3.0 Volt peak with<br>20 or 26dB gain |  |
| E3                                                | 34 Mbit/s | HDB3      | 75 ohm unbalanced BNC                          | Terminate: 1.0 Volt peak<br>Monitor: 1.0 Volt peak with<br>20 or 26dB gain                                                                                 |  |

### Go back to top

### 16.1.5 Analysis

ITU-T recommendations are available to analyze results.

ITU-T G-series: Telecommunications design, checking of performance limits, expected behaviors and design structures

ITU-T M-series: Applies to the installation and maintenance of the network and defines "Bringing Into Service" (BIS) procedures and test limits for fault detection and localization.

The ITU-T recommendations are described in greater detail in the Measurements section.

### Go back to top

### 16.1.6 Histograms

The Histogram tab brings up the screen displaying a historical record of the Alarms and Errors recorded during the measurement interval. A dedicated page is available for errors, alarms including BER. Scroll through the various pages to display the anomalies of interest.

### Histogram (E1 Alarms)

| >Runnir<br>Results | ıg     | (      | <mark>0</mark> 7 | <u> -</u> |     | √       |
|--------------------|--------|--------|------------------|-----------|-----|---------|
| Summa              | ary Ei | rrors/ | 'Ala             | rms       | Eve | ent Log |
| Signal             |        | ysis   | _                |           |     | Graph   |
| 0                  |        | +      |                  | -         |     |         |
|                    |        | E1 A   | larr             | ns        |     |         |
| LOS                |        |        |                  |           |     |         |
| AIS                |        |        |                  |           |     |         |
| sec                | 0      |        | 60               |           | 120 | )       |
|                    |        |        |                  |           |     |         |
|                    |        |        |                  |           |     |         |
|                    |        |        |                  |           |     |         |
|                    |        |        |                  |           |     |         |
|                    |        |        |                  |           |     |         |
|                    |        |        |                  |           |     |         |
|                    |        | Page   | e 1 c            | of 3_     | ۲   |         |

The alarms and errors presented will depend on the signal type and structure selected. A graphical timeline on the horizontal axis indicates when the event occurred since the test was started. The upper left and right arrows allow the user to scroll through the measurement period while the + and - keys allow zooming of the time axis. The events presented above are shown in the table below.

| E1 signal | Alarm description        |
|-----------|--------------------------|
| LOS       | Loss of signal           |
| AIS       | Alarm Indication Signal  |
| LOF       | Loss of Frame            |
| LOMF      | Loss of Multi Frame      |
| RDI       | Remote Defect Indication |

The screen below depicts E1 Errors.

# Histogram (E1 Errors)

|                    |       | •       | ÷      |     |     | ·       |
|--------------------|-------|---------|--------|-----|-----|---------|
| >Runnin<br>Results | ıg    | ()      | 0 🚧    |     |     | ✓       |
| Summa              | iry E | Errors/ | 'Alarr | ns  | Eνε | ent Log |
| Signal             | Ana   | alysis  | Histo  | ogr | am  | Graph   |
|                    |       | +       | -      |     |     |         |
|                    |       | E1 E    | Errors | ;   |     |         |
| CODE               |       |         |        |     |     |         |
| sec                | 0     |         | 60     |     | 120 | )       |
|                    |       |         |        |     |     |         |
|                    |       |         |        |     |     |         |
|                    |       |         |        |     |     |         |
|                    |       |         |        |     |     |         |
|                    |       |         |        |     |     |         |
|                    |       |         |        |     |     |         |
|                    |       |         |        |     |     |         |
|                    |       | Page    | e 2 of | 3   | D   |         |

| E1 signal | Error description             |
|-----------|-------------------------------|
| Code      | Code error (HDB3, AMI)        |
| FAS       | Frame Alignment Signal        |
| CRC       | Cyclic Redundancy Check error |
| REI       | Remote Error Indication       |

The screen below depicts BER and bit errors.

| Histogram (BERT Alarms/Errors) |        |                           |                        |       |
|--------------------------------|--------|---------------------------|------------------------|-------|
| >Runnir<br>Results             |        | () 🚧                      |                        | ✓     |
| Summa                          | ary Er | rors/Alarn                | ns Even                | t Log |
| Signal                         | Anal   | ysis <mark>Histo</mark>   | o <mark>gra</mark> m G | iraph |
|                                |        | + -                       |                        | 0     |
|                                | BER    | F Al <mark>a</mark> rms/B | Errors                 |       |
| LSS                            |        |                           |                        |       |
| BIT                            |        |                           |                        |       |
| sec                            | 0      | 60                        | 120                    |       |
|                                |        |                           |                        |       |
|                                |        |                           |                        |       |
|                                |        |                           |                        |       |
|                                |        |                           |                        |       |
|                                |        |                           |                        |       |
|                                |        |                           |                        |       |
|                                |        | Page 3 of                 | 3 💿                    |       |

| BERT | Description                      |
|------|----------------------------------|
| LSS  | Loss of Sequence Synchronization |
| Bit  | Bit error                        |

### Go back to top

### 16.1.7 Graph

The Bar tab brings up the screen displaying a log of the Errors recorded during the measurement interval. A dedicated page is available for each error type. Scroll through the various pages to display the anomaly of interest.

Graph

| >Running<br>Results | 🧿        | ) 🔕 🚧 🗖                 |       | ✓       |
|---------------------|----------|-------------------------|-------|---------|
| Summary             | / Error  | s/Al <mark>ar</mark> ms | s Eve | ent Log |
| Signal A            | \nalysi: | s Histog                | ram   | Graph   |
| Code                |          |                         | 0     | + 0     |
| 1E8                 |          |                         |       |         |
| 1E7                 |          |                         |       |         |
| 1E6                 |          |                         |       |         |
| 1E5                 |          |                         |       |         |
| 1E4                 |          |                         |       |         |
| 1E3                 |          |                         |       |         |
| 1E2                 |          |                         |       |         |
| 1E1                 |          |                         |       |         |
| 1E0                 |          |                         |       |         |
| hr                  | 0        | 2                       | 4     |         |
| (                   | Pa       | ge 1 of 2               | ۲     |         |

A graphical timeline on the horizontal axis indicates when the event occurred while, the vertical axis indicates the error ratio. The upper left and right arrows allow the user to scroll through the measurement period while the + and – keys allow zooming of the time axis.

A View status screen can be accessed by tapping on the result area. A start and finish time, including count of the event type will be displayed. The View status screen is shown below.

| Graph - View Status |                                            |          |  |  |
|---------------------|--------------------------------------------|----------|--|--|
| Results             | •••                                        | V        |  |  |
| 30                  | ew Status                                  | og<br>ph |  |  |
| 1E<br>Start         | 17/10/11 21:43:25.0<br>17/10/11 22:13:25.0 |          |  |  |
| 1E<br>1E Type       | Code                                       | -        |  |  |
| 1E Count            | 10                                         |          |  |  |
| 1E<br>1E            | OK                                         |          |  |  |
| 1E2                 |                                            |          |  |  |
| 1E1<br>1E0          |                                            |          |  |  |
| hr 0                | 2 4                                        |          |  |  |
| ٩                   | Page 1 of 2 💿                              |          |  |  |

### Go back to top

# 17.0 Alarms/Errors

The Alarm and Error generation functionality can be found on the main menu.

Tap the Alarm/Error icon to display the Alarm and Error Generation screen. The Alarm and Error functions are used in conjunction with the pull-down menu, which has dedicated buttons for Error Injection and Alarm Generation. The alarm and error selections will depend on PDH signal types.

| >Ready<br>DS1  | A 🗖  | ≁ |
|----------------|------|---|
| Alarm Type     |      | ▼ |
| Alarm Flow     |      | ▼ |
| Alarm Duration | 0.1s | • |
| Error Type     |      | V |
| Error Flow     |      | V |
| Error Rate     | 1E-3 | ▼ |

# 17.1 Alarm Generation

The following PDH/DSn (T-Carrier) alarms can be generated:

# Alarm Type:

- E1 signals: LOS, LOF, AIS, RDI
- E3 signals: LOS, LOF, AIS, RDI
- DS1 signals: AIS, Yellow, idle, LOS, LOF
- DS3 signals: LOS, LOF, OOF, AIS, Parity

Alarm Flow - Continuous, Count

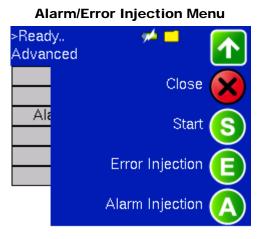
Alarm Duration - 0.1s, 1s, 10s, 100s

Error Type:

- E1 signals: Code, FAS, CRC, REI, E-bit, Bit
- E3 signals: Code, FAS, Bit
- DS1 signals: Code, FAS, Bit
- DS3 signals: Code, FAS, Bit

Error Flow - Injects a range of different anomalies into the transmit signal. Error insertion modes include:

- Single: Inserts a single error every time the insertion button is tapped
- Count: Specific count or number of errors when the insertion button is tapped
- Rate: Specific rate between 1^10<sup>-3</sup> and 5^10<sup>-6</sup>


The list of available error types depends on the type of framing being used, and the PDH/DSn hierarchies and line interfaces that have been selected.

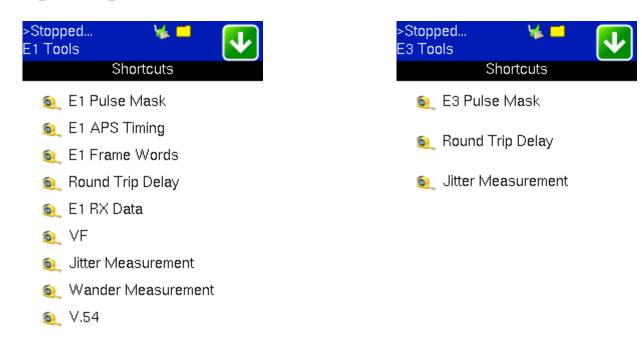
PDH/DSn

| >Ready<br>DS1  | A 🗖  | ≁ |
|----------------|------|---|
| Alarm Type     |      | ▼ |
| Alarm Flow     |      | ▼ |
| Alarm Duration |      | • |
| Error Type     |      | ▼ |
| Error Flow     |      | ▼ |
| Error Rate     | 1E-3 | ▼ |

## Alarm Generation Error Insertion (pull-down menu)

At any time during the test process, you can inject errors or generate alarms by tapping the Error Injection and Alarm Generation buttons in the pull-down menu.




Go back to top

# 18.0 E1/E3 Tools

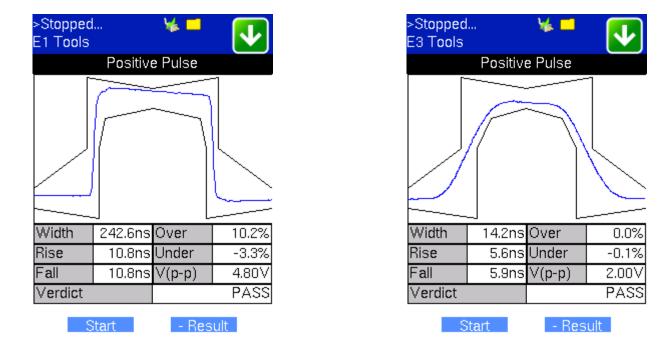
The E1 and E3 Tools can be found on the main menu. Tap the E1 and E3 Tools icon to display the shortcut screen shown below.

E1 Tools Menu

E3 Tools Menu



## 18.1 E1/E3 Pulse Mask

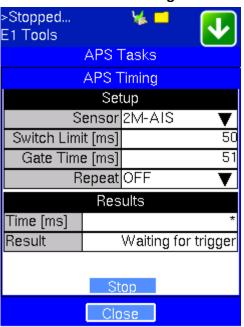

This function captures and analyzes E1 (2,048Mbits/s) or E3 (34,368Mbits/s) pulse shape. The purpose of maintaining the correct pulse shape is to reduce inter-symbol interference – if the logic 1s and 0s cannot be detected by the receiver correctly, bit and code errors will result.

The pulse amplitude and overall shape are superimposed and compared with the ITU-T G.703 pulse conformance template. Telecommunications signals require specific load impedance for pulse mask compliance testing to be accurate. When high frequency pulses are transmitted down a transmission line, a portion of the pulse will be reflected when and wherever it encounters an impedance mismatch. The reflection is proportional to the impedance mismatch i.e. the greater the mismatch, the greater the reflection of the pulse. To avoid reflections impacting the E1 measurement, the TX130M+ will terminate twisted pair cables with 120 ohms and coax cable with 75 ohms impedance. Note that 75ohm and 120ohm twisted pair cables each have different nominal amplitudes associated with them - For the 75ohm coax cable, the pulse amplitude must be  $2.37V \pm 10\%$  while for 120ohm twisted pair cables, the pulse amplitude must be  $3.0V \pm 10\%$ .

According to the G.703 recommendation, E1 pulses need only be measured at the transmitter output, and are *not* required to meet the pulse template over a variety of cable lengths – this of course will not provide information on distortions caused by misalignment and other impairments of the line. The TX130M+ on the other hand allows you to connect to a live system at the Tx output port via a Protected Monitoring Point (PMP) or at the far end of a transmission line. In either case, the signal will be attenuated or amplified as necessary to compensate for test point or cable attenuation characteristics.

E1 Pulse Mask

E3 Pulse Mask




# 18.2 E1 APS Testing

This function measures the Automatic Protection Switching (APS) limits of the network. APS applies the Multiple E1 Links and enables network elements to reroute traffic to a backup circuit in the event of network failure or problems.

Test Procedure:

- 1. The TX130M+ should be connected to transmission system to ensure that the switching time is measured for the service transported by the E1 links.
- 2. Ensure that no errors or alarms are present on the transmission system because this will impact the measurement.
- 3. The measurement will be triggered by an Alarm Indication Signal (AIS) or a Test Sequence Error (TSE) event of >1 x 10-4
- 4. The TX130M+ measures how long the AIS or TSE event remains present after the event is first recognized and will continue to measure the total disruption time in the event of multiple disruptions



### **E1 APS Testing**

# 18.3 E1 Frame Words

This function requires the E1 signal to be framed. The NFAS word is used to carry information about the status of the link and to

provide control signals for primary rate multiplexers.

| Not Frame Alignment Signal (NFAS) |        |   |   |     |     |     |     |     |
|-----------------------------------|--------|---|---|-----|-----|-----|-----|-----|
| Bit                               | 1      | 2 | 3 | 4   | 5   | 6   | 7   | 8   |
| Value                             | Si (M) | 1 | А | Sa4 | Sa5 | Sa6 | Sa7 | Sa8 |

• Bit 1: Reserved for International use (M is used to transmit the CRC multiframe signal in PCM30C and PCM31C)

- Bit 2: Set to "1" to prevent simulation of FAS
- Bit 3: A shows the remote alarm indication
- Bits 4 to 8: Sa4 to Sa8 are spare bits.

Tx: Bits Sa4 to Sa8 are used to send optional network messages. The Sa bits should be set to "1" when they are not used or when links cross International borders.

Rx: Bit Sa4 can be used as a message based data link for operations, maintenance and performance monitoring.

| E1 Frame Words - Rx  |           |  |
|----------------------|-----------|--|
| >Stopped<br>E1 Tools | - *- 🛃    |  |
|                      | E1 Framed |  |
| RX                   | TX        |  |
| SA4                  | 11111111  |  |
| SA5                  | 11111111  |  |
| SA6                  | 11111111  |  |
| SA7                  | 11111111  |  |
| SA8                  | 11111111  |  |
|                      |           |  |
|                      |           |  |
|                      |           |  |
|                      |           |  |
|                      |           |  |
|                      | Close     |  |

| E1 Frame Words - Tx  |            |  |
|----------------------|------------|--|
| >Stopped<br>E1 Tools | * 🗸 😼      |  |
| E1 F                 | ramed      |  |
| RX                   | TX         |  |
| SA                   |            |  |
| SAS                  |            |  |
| SA                   |            |  |
| SA:                  |            |  |
| SA                   | 3 11111111 |  |
|                      |            |  |
| C                    | ose        |  |

Go back to top

**18.4 Round Trip Delay** 

| >Stopped<br>E3 Tools | ¥.          |          |
|----------------------|-------------|----------|
| Ro                   | und Trip De | lay      |
|                      | Timing      |          |
|                      | Results     |          |
| Time [ms]            |             | 0.000 ms |
| Result               |             | Complete |
|                      |             |          |
|                      |             |          |
|                      |             |          |
|                      |             |          |
|                      |             |          |
|                      |             |          |
|                      | Start       |          |
|                      | Close       |          |

The Round Trip Delay (Propagation Delay) measurement works by sending a test pattern. A errors is transmitted in the pattern. The time it takes for the error to reach the receiver is the propagation time through the network.

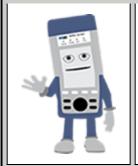
- View the Round Trip Delay of a looped back signal.
- Set check box on Setup Rx pattern to Out-of-Service

### Go back to top

## 18.5 E1 Rx Data

Tapping the E1 Rx Data the E1 Tools screen displays the PDH E1 Rx Data showing received data and captures the current timeslots.

|    | L              |           |          |
|----|----------------|-----------|----------|
|    | opped<br>Tools | ¥ =       |          |
|    | E              | 1 Rx Data |          |
| 0  | FAS            | 01110010  | 00101110 |
| 3  | 11011101       | 01101011  | 11000110 |
| 6  | 10110000       | 01101100  | 01101011 |
| 9  | 11100110       | 01100110  | 00011110 |
| 12 | 01101001       | 10101010  | 10101101 |
| 15 | 11011010       | 01001001  | 11111111 |
| 18 | 10000110       | 00010000  | 00001100 |
| 21 | 00000111       | 01101101  | 00100000 |
| 24 | 11011000       | 01111000  | 00001000 |
| 27 | 01001100       | 00110111  | 01110000 |
| 30 | 10010100       | 01011011  |          |
|    | (              | Pause     |          |


### E1 Rx Data

### Go back to top

## 18.6 E1 VF

Tapping the VF the E1 Tools screen displays the VF Tasks showing The VF menu performs a variety of talk/listen functions.

| E1 VF Tasks                                                 | E1 Warning                       |
|-------------------------------------------------------------|----------------------------------|
| >Stopped 🦌 💻 🚫                                              | >Stopped 🦌 🗖 🚺                   |
| VF Tasks                                                    | Shortcuts                        |
| Setup           Tx T/S         1           Rx T/S         1 | 🕢 Error                          |
| Mode Talk V Code A-Law V                                    | Only available with<br>Framed E1 |
| Results                                                     |                                  |
| Data 11010100                                               |                                  |
| Freq 0 Hz Level -62.6                                       |                                  |
|                                                             | ОК                               |
|                                                             | 😥 Wander Measurement             |
| Close                                                       | <b>Q</b> V.54                    |
|                                                             |                                  |



# Note

Do not attempt to enter VF Tasks if the Frame LED is not green. Green LEDs indicate that the framing found on the received signal matches the framing selected in the Setup screen. It is impossible to talk, listen, or perform other channelized functions in the absence of frame synchronization, since channels can be identified only within a framed signal.

The VF Tasks screen lets you choose:

## Setup:

- Timeslot Channel to test for both transmitting and receiving: Options: 1 31
- Mode Talk, send a Tone on the transmit signal. Transmit audio data from the external headset into selected timeslot.
- Code: Options: u-Law or A-Law
- Programmable ABCD: Manual edit ABCD (User) or IDLE, SEIZE
- Transmitted Frequency: Options: 50 to 3950Hz
- Transmitted Level: Options: -60 to 3dBm

### **Results:**

- Measure signal frequency and level in selected timeslot.
- Listen to the voice channel in selected timeslot via external headset.
- ABCD bits monitor and View data in selected T/S channel.

### Go back to top

# **18.7 Jitter Measurement**

By tapping the Jitter Measurement, the E1/E3 Tools screen displays the jitter measurements showing measurements and analysis of jitter in received signal.

E1 Jitter Measurement

**E3 Jitter Measurement** 

| >Stopped 🤸 🗖 🚫              | >Stopped 🦌 💻 🚫              |
|-----------------------------|-----------------------------|
| Jitter Measurement          | Jitter Measurement          |
| 10.0                        | 10.0                        |
| 8.0                         | 8.0                         |
| 6.0                         | 6.0                         |
| 4.0                         | 4.0                         |
| 2.0                         | 2.0                         |
| 0.0                         | 0.0                         |
| Results                     | Results                     |
| Current 0.008UI Max 0.009UI | Current 0.026UI Max 0.037UI |
| Setup                       | Setup                       |
| Filter HP1+LP               | Filter HP2+LP               |
| Stop                        | Stop                        |

The Jitter Measurement submenu allows the user to measure and analyze received signal jitter. The measurements example is shown above (the vertical grid spacing is 2.0Ulpp). Red Bar is Max. peaked jitter during testing and Yellow is the current peaked jitter.

Press "Start" to start measurement

Select the HP1+LP (20Hz to 100kHz) or HP2+LP (18kHz to 100kHz) filter for E1, and HP1+LP (10Hz to 400kHz) or HP2+LP (30kHz to 400kHz) filter for E3

Go back to top

# **18.8 Wander Measurement**

### Setup

- Clock Port Unb RX2 selected as default. The external reference clock is connected through the Aux Rx port.
- Clock External 2Mbit/s chosen as default

Press Start to run the test. The Wander Measurement Menu displays Current, Max, Min, and MTIE results in nanoseconds.

### Wander Measurement Menu

| >Stopped<br>E1 Tools | ¥ <mark>=</mark> | $\otimes$ |
|----------------------|------------------|-----------|
|                      | Results          |           |
| Current TIE          | -23              | 52787 ns  |
| Max +TIE             |                  | 0 ns      |
| Min -TIE             | -23              | 52787 ns  |
| MTIE                 | 23               | 52787 ns  |

| Setup          |         |   |
|----------------|---------|---|
| Clock Port     | Unb RX2 | ¥ |
| Clock External | 2Mbit/s | V |



# 18.9 V.54

The V.54 menu features the Loop Up and Loop Down functions for Loopback testing. Tap on **Loop Up** or **Loop Down** to create or cancel a loopback.

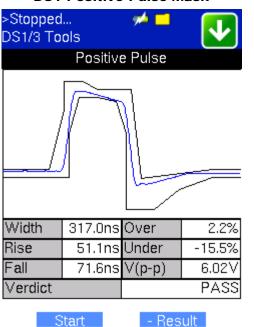




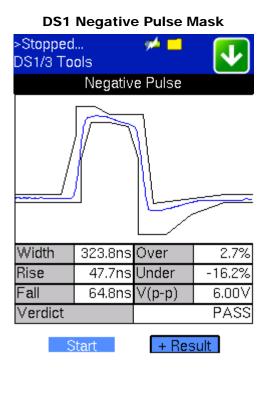
# 19.0 DS1/3 Tools

The DS1/3 Tools can be found on the main menu. Tap the DS1/3 Tools icon to display the shortcut screen shown below.

**E1 Jitter Measurement** 


**E3 Jitter Measurement** 

| >Stopped 🤸 🗖 🚫              | >Stopped 🦌 📁 🐼<br>E3 Tools |
|-----------------------------|----------------------------|
| Jitter Measurement          | Jitter Measurement         |
| 10.0                        | 10.0                       |
| 8.0                         | 8.0                        |
| 6.0                         | 6.0                        |
| 4.0                         | 4.0                        |
| 2.0                         | 2.0                        |
| 0.0                         | 0.0                        |
| Results                     | Results                    |
| Current 0.008UI Max 0.009UI | Current 0.026UI Max 0.037U |
| Setup                       | Setup                      |
| Filter HP1+LP               | Filter HP2+LP              |
| Stop                        | Stop                       |


# 19.1 DS1 Pulse Mask

This function captures and analyzes DS1 (1.544Mbits/s) pulse shape. The purpose of maintaining the correct pulse shape is to reduce inter-symbol interference – if the logic 1s and 0s cannot be detected by the receiver correctly, bit and code errors will result.

The pulse amplitude and overall shape are superimposed and compared with the Telcordia TR-TSY-000499 and ITU-T G.703 pulse conformance template. Telecommunications signals require specific load impedance for pulse mask compliance testing to be accurate. When high frequency pulses are transmitted down a transmission line, a portion of the pulse will be reflected when and wherever it encounters an impedance mismatch. The reflection is proportional to the impedance mismatch i.e. the greater the mismatch, the greater the reflection of the pulse.



### **DS1 Positive Pulse Mask**



### Go back to top

# 19.2 DS1 Loop

Tap the DS1 Loop icon to display the shortcut screen shown below.

| DS1 Loop                      | DS1 Loop Menu     |
|-------------------------------|-------------------|
| >Stopped 📌 🗖 👽<br>DS1/3 Tools | >Stopped 📌 🗖 🏠    |
| DS1 Loop                      | Close 🙀           |
| TX                            |                   |
| Direction Up 🛛 🔻              | Start 🕟           |
| Loop Type Inband 🛛 🔻 🔻        |                   |
| Mode CSU V                    | Error Injection   |
|                               | Alarm Injection 🛕 |
|                               | Loop 🕜            |
|                               |                   |
| Close                         | Close             |

Loopback Control: Tap the Loop Icon located at the top of the screen to select Up (Loop Up) or Down (Loop Down).

# Loop Up:

- 1. Send a known test pattern and check if the pattern is received. If received, declare "pre-exist loop" and stop.
- 2. Send the loop up code for 5 seconds. If in-band, check if the loop up code is returned. If out of band (ESF FDL), send a known pattern in the payload and check if the known pattern is returned. If not returned in 10 seconds, declare loop up failed.

## Loop Down:

- 1. Send a known test pattern and check if the pattern is received. If not received, declare "loop down" and stop.
- 2. Send the loop down code for 5 seconds. Same as loop up but check for the return code disappeared.

### Transmits in-band and out-of-band DS1 loop

In-band:CSU, NIU FAC1, NIU FAC2. Transmit: Select code transmitted for 5 seconds (nominal).

# ESF DFL (Out-of-band): Line, Payload, Network.

Transmit: Selected code transmitted either continuously or a burst of n-messages (where n is selectable in the range 1 to 15).

# Go back to top

# 19.3 Round Trip Delay

The Round Trip Delay (Propagation Delay) measurement works by sending a test pattern. Errors are transmitted in the pattern. The time it takes for the error to reach the receiver is the propagation time through the network.

- View the Round Trip Delay of a looped back signal.
- Set check box on Setup Rx pattern to Out-of-Service

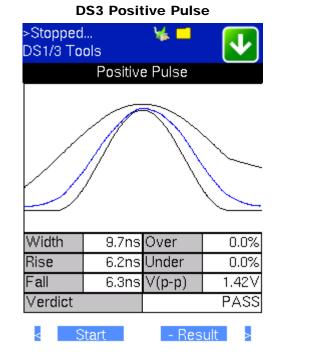
# Go back to top

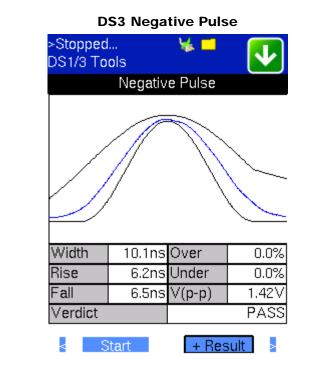
# 19.4 DS1 Rx Data

Tapping the DS1 Rx Data the DS1 Tools screen shows the DS1 Rx Data, which shows received data and captures the current timeslots.

### DS1 Rx Data

| >Stopped 📌 🗖 🚺<br>DS1/3 Tools<br>DS1 RX Data |          |          |          |  |
|----------------------------------------------|----------|----------|----------|--|
| 0                                            | F        | 11011110 | 11001001 |  |
| 3                                            | 11000010 | 10001000 | 01111101 |  |
| 6                                            | 01101100 | 10111001 | 01100000 |  |
| 9                                            | 10010111 | 00100110 | 01000010 |  |
| 12                                           | 11100001 | 01000101 | 01011110 |  |
| 15                                           | 10110110 | 11111010 | 10110000 |  |
| 18                                           | 00010010 | 11110011 | 00001000 |  |
| 21                                           | 01010110 | 10110100 | 10101110 |  |
| 24                                           | 00110001 |          |          |  |
|                                              |          |          |          |  |


Pause


| Go | back | to | top |  |
|----|------|----|-----|--|

# 19.5 DS3 Pulse Mask

This function captures and analyzes DS3 (44.736Mbits/s) pulse shape. The purpose of maintaining the correct pulse shape is to reduce inter-symbol interference – if the logic 1s and 0s cannot be detected by the receiver correctly, bit and code errors will result.

The pulse amplitude and overall shape are superimposed and compared with the Telcordia TR-TSY-000499 and ITU-T G.703 pulse conformance template. Telecommunications signals require specific load impedance for pulse mask compliance testing to be accurate. When high frequency pulses are transmitted down a transmission line, a portion of the pulse will be reflected when and wherever it encounters an impedance mismatch. The reflection is proportional to the impedance mismatch i.e. the greater the mismatch, the greater the reflection of the pulse.





- Left/Right button: To move the pulse mask to left or right direction, press the left or right button first and re-run the test.

Go back to top

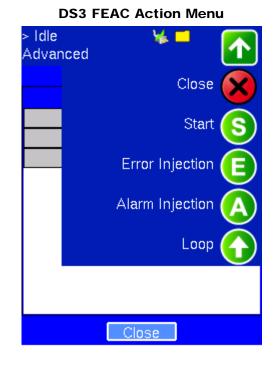
# 19.6 DS3 FEAC

# DS3 FEAC responses (Far End Alarm and Control Channel Responses):

Enabling this option allows loop-back to be configured from any "far-end" equipment connected on the other end of the line. These can be used to send and receive loop up codes and information from the far end T3 device. You can enable and disable through a drop down menu in this field.

- LoopUP Activate: 00010010 11111111 sent >10 repetitions
- LoopDown Deactivate: 00100100 11111111 sent >10 repetitions

FEAC alarms are sent from the remote end device towards the local device by means of the C bit in the sub-frame. When a failure is declared on the remote end unit, this is how it notifies the near end unit. Some FEAC Codes are shown below

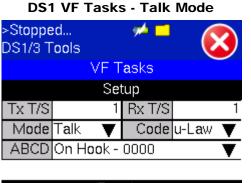

| DS3 FEAC Menu           |            |    |   |
|-------------------------|------------|----|---|
| >Stopped<br>DS1/3 Tools | 9 <b>*</b> |    | ✓ |
| FEAC                    | Tasks      |    |   |
| ΤX                      |            | RΧ |   |
| FEAC                    | None       |    | ▼ |
| Direction               | Down       |    | ▼ |
| Loop Туре               | NIU        |    | ▼ |
|                         |            |    |   |
|                         |            |    |   |
|                         |            |    |   |
|                         |            |    |   |
|                         |            |    |   |
|                         |            |    |   |
| Clo                     | se         |    |   |

### FEAC Alarm TYPE

DS3 Equip. Failure(Service Affecting) DS3 LOS DS3 OOF DS3 AIS RCV DS3 IDLE RCV DS3 EQUIQ FAIL(NON-SERVICE AFFECT) COMMON EQUIP. FAIL (NSA) MULTIPLE DS1 LOS DS1 EQUIP FAIL SINGLE DS1 LOS DS1 EQUIP FAIL(NON-SERVICE AFFECT)

LOOP TYPE: Options: NIU, LINE

DS3 FEAC Tasks (Page 1)




### DS3 FEAC Tasks (Page 2)

| >Stopped 🔞 🐼 🚧 💻 🛛 🚺   | >Stopped 📵 🙆<br>DS1/3 Tools | ) <b>**</b> |
|------------------------|-----------------------------|-------------|
| FEAC Tasks             | FEAC                        | Fasks       |
| TX RX                  | TX                          | RX          |
| FEAC                   | LOS                         | *           |
| LOS OOF                | OOF                         | *           |
| AIS > Idle             | AIS                         | *           |
| EQ FAIL SA EQ FAIL NSA | > Idle                      | *           |
|                        | EQ FAIL SA                  | *           |
|                        | EQ FAIL NSA                 | *           |
|                        |                             |             |
| 💿 Page 1 of 2 💿        | 💿 Page                      | 2 of 2_ 💿   |
| Close                  | Clo                         | se          |

# 19.7 DS1 VF

Tapping the VF the DS1 Tools screen displays the VF Tasks showing The VF menu performs a variety of talk/listen functions.




| Results |         |   |  |
|---------|---------|---|--|
| ABCD    | * Data  | * |  |
| Freq    | * Level | * |  |

### DS1 VF Tasks - Tone Mode

| >Stoppe<br>DS1/3 T |                     |    | <b>*</b> | $\otimes$ |  |
|--------------------|---------------------|----|----------|-----------|--|
|                    | VF Tasks            |    |          |           |  |
|                    | Setup               |    |          |           |  |
| Tx T/S             |                     | 1  | Rx T/S   | 1         |  |
| Mode               | Tone                | ◄  | Code     | A-Law 🔻   |  |
| Freq               |                     | 50 | Level    | 3.00      |  |
| ABCD               | ABCD On Hook - 0000 |    |          |           |  |
| Results            |                     |    |          |           |  |
| ABCD               |                     | *  | Data     | *         |  |
| Freq               |                     | *  | Level    | *         |  |

Close





# Note

Do not attempt to enter VF Tasks if the Frame LED is not green. Green LEDs indicate that the framing found on the received signal matches the framing selected in the Setup screen. It is impossible to talk, listen, or perform other channelized functions in the absence of frame synchronization, since channels can be identified only within a framed signal.

The VF Tasks screen lets you choose:

# Setup:

- Timeslot Channel to test for both transmitting and receiving: Options: 1 24
- Mode Talk, send a Tone on the transmit signal. Transmit audio data from the external headset into selected timeslot.
- Code: Options: u-Law or A-Law
- Programmable ABCD state for On-Hook, Off-Hook, Wink, User
- Transmitted Frequency: Options: 50 to 3950Hz
- Transmitted Level: Options: -60 to 3dBm

# **Results**:

- Measure signal frequency and level in selected timeslot
- Listen to the voice channel in selected timeslot via external headset.
- ABCD bits monitor in selected channel

# Go back to top

# **19.8 Jitter Measurement**

By tapping the Jitter Measurement, the DS1/3 Tools screen displays the jitter measurements showing measurements and analysis of jitter in received signal.

| 05      | Do no Sitter Medsarement |        |       |     |         |  |  |  |
|---------|--------------------------|--------|-------|-----|---------|--|--|--|
| >Stoppe |                          |        | 🦟 🗖   |     |         |  |  |  |
| DS1/3 T | oois                     |        |       |     |         |  |  |  |
|         | Jitter                   | Mea    | surem | ent |         |  |  |  |
| 10.0    |                          |        |       |     |         |  |  |  |
| 8.0     |                          |        |       |     |         |  |  |  |
| 6.0     |                          |        |       |     |         |  |  |  |
| 4.0     |                          |        |       |     |         |  |  |  |
| 2.0     |                          |        |       |     |         |  |  |  |
| 0.0     |                          |        |       |     |         |  |  |  |
|         |                          | Res    | ults  |     |         |  |  |  |
| Current | 0.0                      | 65UI   | Max   |     | 0.071UI |  |  |  |
|         |                          | Set    |       |     |         |  |  |  |
|         | - RX I                   | Filter | HP1+L | P.  | V       |  |  |  |
|         |                          | Sto    | qq    |     |         |  |  |  |

# DS1/3 Jitter Measurement

The Jitter Measurement submenu allows the user to measure and analyze received signal jitter. The measurements example is shown above (the vertical grid spacing is 2.0UIpp). Red Bar is Max. peaked jitter during testing and Yellow is the current peaked jitter.

Press "Start" to start measurement

Select the HP1+LP (10Hz to 40kHz) or HP2+LP (8kHz to 40kHz) filter for DS1, and HP1+LP (10Hz to 400kHz) or HP2+LP (30kHz to 400kHz) filter for DS3

Go back to top

# 20.0 Profiles

Profiles can be created in any application that has a 'Profiles' pull-down menu available. The PDH & DS1/3 applications all have the ability to save profiles. Profiles can be viewed and loaded in the Profiles folder located in the Files folder structure.



To save a new profile from the PDH & DS1/3 applications mentioned above, select the 'Save as New' pull-down menu option. This will bring up an alpha-numeric keypad to name the profile. When the profile is saved, all of the test configurations that apply to the particular application (PDH & DS1/3) are saved. This allows for fast access to pre-configured test configurations.

#### Go back to top

# 21.0 Additional Tests

# 21.1 ISDN PRI Call

## 21.1.1 Setup (PRI Call Setup)

Configuration parameters for ISDN PRI Call are as follows:

#### (Page 1)

- Mode: TE or NT
  - **TE:** Terminating Equipment used when the TX130M+ is emulating customer equipment. TE usually uses the received signal to clock the transmitter.
  - **NT:** Network Terminal is used when the TX130M+ is emulating an ISDN switch, such as DMS-100, 5ESS. NT usually uses the internal clock
  - Monitor: Trace message details:
    - D Channel decodes help to verify that a call is successfully established, or determine why a call was not completed by examining the protocol cause values.
- Call Control: The Q.931 specification indicates which type of ISDN switch is to be tested.
  - **AT&T** relates to the 5ESS switch
  - NTI relates to the Northern Telecom DMS-100 switch
  - ETSI is the ETSI standard
- Channel Config: 23B+D, 46B+2D, 47B+D, or 23Bx2 in T1; Single/Dual PRI in E1.
- **D** Channel Designates the time slot to transmit D Channel messages. The D Channel decoder helps to verify that a call is successfully established, or determine why a call was not completed by examining the protocol cause values.
- My num type: Unknown, International, National, or Local
- My num plan: Unknown, Telephony, or Private
- My phone#: Tap on the box and enter the phone number using the alphanumeric keyboard

#### PRI Call Setup (Page 1)

#### PRI Call Setup (Page 2)

| DTMF<br>Setup Sig | Sca<br>inal |      | 31       | lulti<br>Ca | _  | -   | ckup<br>sult |
|-------------------|-------------|------|----------|-------------|----|-----|--------------|
| octop olg         |             | ode  |          | 00          | ui | 110 | T            |
| Call              | Con         | trol | ETS      | SI          |    |     | Ť            |
| Channel Config    |             |      | 23B+D 🔻  |             |    |     |              |
| D Channel         |             |      |          |             |    |     | 24           |
| My nu             | um ty       | /pe  | Loc      | al          |    |     | T            |
| My ni             | um p        | lan  | Tele     | epho        | ny |     | T            |
| My                | phor        | ne#  | 58<br>52 |             |    | 22  | :997         |
| 0                 | Pa          | age  | 1 of     | 2 (         | 0  |     |              |

| DTMF          | Sca    | in    | $\mathbb{N}$ | lulti | D  | Backup |
|---------------|--------|-------|--------------|-------|----|--------|
| Setup Si      | gnal   | Tra   | ice          | Ca    | ll | Result |
|               | Caller | ' ID  | Blo          | cked  | -  | T      |
| Call          | answ   | /er   | Car          | ncel  |    | T      |
| Sub Addr Type |        |       | NSAP 🛛 🔻     |       |    |        |
|               | My si  | ub#   |              |       |    |        |
| Coc           | lec T  | уре   | U la         | ŧw    |    | V      |
|               | L2 Fi  | ilter | Off          |       |    | T      |
| h             | dle Co | ode   | 19<br>23     | - 3   | 01 | 111111 |
| Line          | 1 Int  | fld   |              |       |    | 0      |
| Line          | 2 Int  | fld   | 37<br>       |       |    | 1      |

(Page 2)

- Caller ID Blocked/Allow.
- Call Answer Prompt, Accept or Cancel.
  - **Prompt** Prompts the user to answer or reject incoming calls. Selecting Prompt displays an answer and reject button on the Call tab.
  - Accept Automatically answers incoming calls
  - Cancel Automatically rejects incoming calls
- Sub Addr Type NSAP or User
- My sub# Tap on the box and enter the sub address number using the alphanumeric keyboard
- Codec Type A law or U law
- L2 Filter Turn ON or OFF layer 2 filter. Turning on the filter prevents layer 2 messages from displaying in the captured trace
- Idle Code Code to be transferred on unused channels. Tap on the box and use the alphanumeric keyboard to enter the code.
- Line Intf Id Line interference ID. Tap on the box and enter the line interference ID using the alphanumeric keyboard

**Note**: In Service (**IS**) indicates a proper port connection, while Out of Service (**OOS**) indicates a faulty port connection in which the user will be unable to run any tests. If OOS is displayed, please check that the physical cable is correctly connected to the port.

#### Go back to top

#### 21.1.2 Signal

- Line Code B8ZS or AMI
- Clock Source Internal, External, Rx, or Offset. If the test set is in TE mode, select Rx to receive timing signals from the master clock.
- Termination Terminated, Monitor, or Bridge
- DS1 Framing SF or ESF
- Unused AIS or Idle

#### **PRI Call Signal**

| IS<br>PRI CALL |                       | * =      | ✓        |  |  |
|----------------|-----------------------|----------|----------|--|--|
| DTMF           | Scan                  | Multi    | DBackup  |  |  |
| Setup Si       | <mark>gnal</mark> Tra | ace Cal  | l Result |  |  |
| Li             | ne Code               | B8ZS     | V        |  |  |
| С              | lock Src              | Internal | Y        |  |  |
| Ter            | mination              | Terminat | ed 🔻     |  |  |
| DS1            | Framing               | ESF 🔻    |          |  |  |
|                | Unused                | AIS      | V        |  |  |
|                |                       |          |          |  |  |

# Main Setup

- Connect to the CPE or Network.
- Connect headsets to the mini USB port
- Select Call Control protocol type
- Select the emulation type (Should be TE on the other NT)

# Go back to top

# 21.1.3 Call - Voice Setup

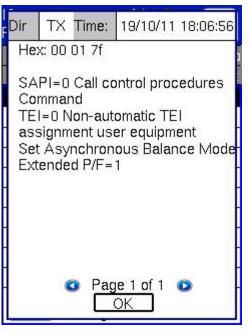
Press Call to bring up the Call Setup menu. Fill out the following parameters:

- Call Type Select Voice
- Channel
- Line If the Channel Config is set to 46B+2D or 47B+D in T1 mode or Dual PRI in E1, the user can choose which line to use.
- Numbering Type Unknown, International, National, or Local
- Numbering Plan Unknown, Telephony, or Private
- Dial To Tap on the corresponding box and use the alphanumeric keypad to enter the number of the receiving line.
- Sub Addr Type NSAP or User
- Sub Addr Tap on the corresponding box and use the alphanumeric keypad to enter a subaddress

Press **Call** to initiate a call to the receiving number. If Prompt was selected for Call Answer in the Setup tab, the unit receiving the call will ring and the user can press **Answer** or **Reject** to accept or reject the call.

Call

Call - Voice Setup


| IS<br>PRI CALL                                           |      |           | ¥   |                 | ţ. | ✓      |
|----------------------------------------------------------|------|-----------|-----|-----------------|----|--------|
| DTMF                                                     | Sca  |           |     | lulti           |    | Backup |
| Setup S<br>RX: RR<br>My num                              |      | Tra<br>22 | ΓX: | Ca<br>IFra<br>7 |    | Result |
| Call 1:OFF HOOK TS: 1 L1<br>V <- 25819 Received<br>Name: |      |           |     |                 |    |        |
| Call 2:ON HOOK                                           |      |           |     |                 |    |        |
| Answer                                                   | Reje | ect       |     |                 | Са |        |

Trace: ISDN Protocol Decode

| Trace          |        |                      |      |       |         |  |  |  |
|----------------|--------|----------------------|------|-------|---------|--|--|--|
| IS<br>PRI CALL |        |                      |      |       |         |  |  |  |
| DTN            | 4F 5   | Scan                 | Mu   | ulti  | DBackup |  |  |  |
| Setu           | p Sign | ial <mark>Tra</mark> | ace  | Call  | Result  |  |  |  |
| #              | Dir    | Tim                  | e:   | Me    | essage  |  |  |  |
| 1              | TX1    | 18:06                | :56  | S.    | ABME    |  |  |  |
| 2              | RX1    | 18:06                | :56  | UA    |         |  |  |  |
| 3              | TX1    | 18:07                | :03  | SABME |         |  |  |  |
| 4              | RX1    | 18:07                | :03  | UA    |         |  |  |  |
| 5              | TX1    | 18:07                | :04  | SABME |         |  |  |  |
| 6              | RX1    | 18:07                | :04  | UA    |         |  |  |  |
| 7              | RX1    | 18:07                | :14  | RR    |         |  |  |  |
| 8              | RX1    | 18:07                | :15  | RR    |         |  |  |  |
| 9              | RX1    | 18:07                | :16  |       | RR      |  |  |  |
| Ch             | 0      | Page                 | 1 of | 2 💽   |         |  |  |  |

| T   |
|-----|
| T   |
| V   |
| Ŧ   |
| 1   |
| T   |
| Y   |
| 997 |
| T   |
|     |
|     |

## Trace Details



D Channel Decodes help to verify that a call is successfully established, or determine why a call was not completed by examining the protocol messages. The user can monitor layer 2 (Q.921) and layer 3 (Q.931) messages on the D Channel in both terminate and monitor modes. Layer 2 results give technicians the ability to check link and D Channel status, verify LAPD frames and check utilization rates. Following link establishment, layer 3 decodes allow technicians to verify such factors as call state, who made or dropped the call, why the call was dropped, where the call is being carried (Interface ID/B channel) and call types.

Go back to top

# 21.1.4 Call - Data Setup

Press Call to bring up the Call Setup menu. Fill out the call setup parameters as mentioned in <u>21.1.3 Voice Setup</u>, but select Data as the Call Type. Select a **Bearer Rate** in the call setup options. Press the **Pattern** tab and select a test pattern to be transmitted on the B channel during data calls.

Note: Test pattern is only applied when call button is pressed.

| 3              | a a second a | Call - Data Setup |  |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|--|
| RECALL         | * [                                                                                                             | ↓                 |  |  |  |  |  |
| Call           | Pattern                                                                                                         |                   |  |  |  |  |  |
| Ca             | ıll                                                                                                             |                   |  |  |  |  |  |
| Call Type I    | Data                                                                                                            | V                 |  |  |  |  |  |
| Bearer Rate    | 64K                                                                                                             | Y                 |  |  |  |  |  |
| Channel        |                                                                                                                 | 1                 |  |  |  |  |  |
| Numbering Type | Local                                                                                                           | V                 |  |  |  |  |  |
| Numbering Plan | Telephony                                                                                                       | V                 |  |  |  |  |  |
| Dial To        | 2                                                                                                               | 5819              |  |  |  |  |  |
| Sub Addr Type  | NSAP                                                                                                            | V                 |  |  |  |  |  |
| Sub Addr       |                                                                                                                 |                   |  |  |  |  |  |

| Pattern tab    |            |  |  |  |  |  |
|----------------|------------|--|--|--|--|--|
| IS<br>PRI CALL | * 🗸 🗸      |  |  |  |  |  |
| Call           | Pattern    |  |  |  |  |  |
| T              | X          |  |  |  |  |  |
| PRBS Pattern   | 2^15-1 🛛 💙 |  |  |  |  |  |
| Invert         |            |  |  |  |  |  |
| R              | ×          |  |  |  |  |  |
| PRBS Pattern   | 2^15-1 🛛 🔻 |  |  |  |  |  |
| Invert         |            |  |  |  |  |  |
|                |            |  |  |  |  |  |
|                |            |  |  |  |  |  |
|                |            |  |  |  |  |  |
|                |            |  |  |  |  |  |
|                |            |  |  |  |  |  |
|                |            |  |  |  |  |  |
|                |            |  |  |  |  |  |

Press Call and the other unit should ring.

#### Go back to top

## 21.1.5 Data Call BERT Results (Result)

After successfully placing a data call, the BER is available. Pressing the Result screen presents the measurement parameters specified in G.821. Only DATA-64/56 and Nx64 Data Call Type in the CALL mode can give BER measurements. When viewing BER measurements, verify that both the PAT SYNC LED and the appropriate framing LED are green. These two LEDs signify that the patterns and framing match for the transmitting and receiving patterns.

| Data Cal       | I - BERT - Errors/Alarms            | Data Call - BEI    | Data Call - BERT - Analysis |                                |             |        |
|----------------|-------------------------------------|--------------------|-----------------------------|--------------------------------|-------------|--------|
| IS<br>PRI CALL | * 🗸 😼                               | IS Y<br>PRI CALL   | *- 🗸                        | IS<br>PRI CALL                 | ¥ •         | •      |
| DTMF           | Scan Multi DBackup                  | DTMF Scan          | DTMF Scan Multi DBackup     |                                |             |        |
| Setup Sig      | gnal Trace Call <mark>Result</mark> | Setup Signal Trace | e Call <mark>Result</mark>  | Setup Signal Trace Call Result |             |        |
| Errors/Ala     | arms Signal Analysis                | Errors/Alarms Sig  | i <mark>nal</mark> Analysis | Errors/Alarms Signal Analysis  |             |        |
|                | DSn : [DS1]                         | Freque             | G.821                       |                                |             |        |
| ET:            | 00/00:00:09                         | 1.5M current (bps) | 1544000                     | ES                             | 0%          | 100.00 |
| LOS            | 0 s                                 | Offset (ppm):      | 0.0                         | SES                            | 0%          | 100.00 |
| AIS            | 0 s                                 | Min (ppm):         | -0.6                        | AS                             | 0%          | 0.00   |
| LOF            | 0 s                                 | Max (ppm):         | 0.6                         | UAS                            | 24%         | 100.00 |
| Yellow         | 0 s                                 | Leve               |                             | EFS                            | 0%          | 0.00   |
|                |                                     | V(p-p)             | 6.4 V                       | Result                         | Y           | PASS   |
|                |                                     | Level(p-p)         | 0.6dB/18.3dBm               |                                | 35          |        |
|                |                                     |                    |                             |                                |             |        |
|                | 5 86 86 50                          | 1 B                | 88 S.                       |                                |             |        |
| (              | Page 1 of 3 💽                       | O Page 1           | of 1 💽                      | 0                              | Page 1 of 1 | 0      |

#### Go back to top

## 21.1.6 Supplementary Service Scan (Scan)

In ETSI protocol, a Supplementary Service Scan scans a line to determine which of a variety of supplementary services are available on it.

#### Call - Data Setup

|         | ¥                                         | . 🗖                                |                                                                            | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|---------|-------------------------------------------|------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| jnal Tr | ace                                       | Ca                                 | 1                                                                          | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Scan    | $\mathbb{N}$                              | lulti                              | DE                                                                         | Backup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Setup   |                                           |                                    | Supp. Scan                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|         | Construction of the                       |                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|         | St                                        | AP                                 |                                                                            | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| ub Addi |                                           |                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|         |                                           |                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|         | tart                                      |                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|         | Scan<br>up<br>MSN #<br>dr Type<br>ub Addr | <mark>Scan</mark> M<br>µp<br>MSN # | gnal Trace Ca<br>Scan Multi<br>up Supp<br>MSN #<br>dr Type NSAP<br>ub Addr | gnal Trace Call<br>Scan Multi DE<br>up Supp. Sup |  |  |  |

| IS<br>PRI CALL |          |     | ¥          |       | ✓        |  |  |
|----------------|----------|-----|------------|-------|----------|--|--|
| Setup S        | ignal    | Tra | ice        | Call  | Result   |  |  |
| DTMF           | Sca      | ın  | N          | lulti | DBackup  |  |  |
| Setup          |          |     | Supp. Scan |       |          |  |  |
| CLIP           | -        | *   | CLI        | R     | *        |  |  |
| CFU            | <u>.</u> | *   | COLP       |       | *        |  |  |
| COLR           | 2        | *   | CFB        |       | *        |  |  |
| SUB            | <u>.</u> | *   | MSN        |       | *        |  |  |
| CFNR           | 2        | *   | DDI        |       | *        |  |  |
| HOLD           | <u>.</u> | *   | UUS        |       | Unavail  |  |  |
| TP             | 2        | *   | AO         | CD    | *        |  |  |
| MCID           | ) * AO   |     | AOCE       |       | *        |  |  |
| AOCS           | 2        | *   | CU         | G     | Verified |  |  |
|                | [        | St  | art        |       |          |  |  |

Pattern tab

#### SubAddress Type:

- NSAP to select the Network Service Access Point subaddress.
- User to use a subaddress defined by a user (no standard applied)

When the test is finished, Here is a list of the services:

- CLIP: Calling Line Identification Presentation presents the Calling Party Number to the called user.
- CLIR: Calling Line Identification Restriction prevents the Calling Party Number from showing to the called user.
- CFU: Call Forwarding Unconditional€" diverts a received call to a specified different number.
- COLP: Connected Line Identification Presentation€"the answering party's number is conveyed to the calling party.
- COLR: Connected Line Identification Restriction€"allows the connected subscriber to stop COLP from operating.
- **CFB**: Call Forwarding Busy Calls are forwarded to a specified number only when the subscriber (called party) 's number is busy.
- **SUB**: Sub Address digit is added to an incoming call to specify an extension.
- MSN: Multiple Subscriber Number. Multiple full numbers are assigned to one BRI line.
- **CFNR**: Call Forwarding No Reply calls are forwarded to a specified number only when the subscriber (called party) does not pick up the line in a specified amount of time.
- **DDI**: Direct Dialing In adds a number of telephone number to a circuit which can be used to dial that BRI (common use is a company number with individual 4 or 4 digit extension numbers that can be dialed)
- HOLD: Call Hold the user may interrupt a call, then reestablish it later. Interruption frees the associated B channel.
- **UUS**: User to User Signaling allows a user to send an Information message in the Setup, Alerting, or Connect message on the D Channel, without connecting the call; the message shows on the ISDN phone display.
- **TP**: Terminal Portability; the ability to suspend and reconnect a call; for example, to move a phone from one plug to another.
- AOC-D/E/S: Advice of Charge determines when charging information is available to the served user; during the call, when the call is terminated, when the call is established.
- MCID: Malicious Call Identification. The called party, on a per call basis, requests the network to register the called party phone number, the calling party number, and the date and time of the calls.
- CW: Call Waiting informs a user of an incoming call which has no B-ch available; user may accept, reject, or ignore.
- CUG: Closed User Group; a private network which restricts communication between members and nonmembers.

#### Go back to top

#### 21.1.7 Multi Call

- Type Single Number or Number Script
- Mode Parallel or Sequential.

| IS<br>PRI CALL      |           | ¥ =          | ✓       |  |  |
|---------------------|-----------|--------------|---------|--|--|
| Setup S             | ignal Tra | ace Call     | Result  |  |  |
| DTMF                | Scan      | Multi I      | DBackup |  |  |
| Setup               | Map L1    | Map L2       | Result  |  |  |
|                     | Туре      | Single Nu    | mber    |  |  |
|                     | Mode      | Parallel     | T       |  |  |
|                     | Call Type | Voice 🛛 🔻    |         |  |  |
| Number              | ring Type | Local 🛛 🔻    |         |  |  |
| Numbe               | ring Plan | Telephony    | / 🔻     |  |  |
| Dia                 | I Number  | n on on<br>S | 22997   |  |  |
| Page 1 of 2<br>Stop |           |              |         |  |  |

Multi Call by Single Call Number

| Multi Call Map L1 |           |          |         |  |  |  |
|-------------------|-----------|----------|---------|--|--|--|
| IS<br>PRI CALL    |           | ¥ =      | ✓       |  |  |  |
| Setup S           | ignal Tra | ace Call | Result  |  |  |  |
| DTMF              | Scan      | Multi    | DBackup |  |  |  |
| Setup             | Map L1    | Map L2   | Result  |  |  |  |
| 1-8               | 9-16      | 17-24    |         |  |  |  |
| Idle              | Voice     | Idle     |         |  |  |  |
| Idle              | Voice     | Idle     |         |  |  |  |
| Idle              | Voice     | Idle     |         |  |  |  |
| Voice             | Idle      | Idle     |         |  |  |  |
| Voice             | Idle      | Idle     |         |  |  |  |
| Listening         | Idle      | Idle     |         |  |  |  |
| Voice             | Idle      | Idle     |         |  |  |  |
| Voice             | Idle      | DChan    |         |  |  |  |
| Stop              |           |          |         |  |  |  |

ISDN Phone Number List Using Reveal MTX

| ace Call Result  |  |  |  |  |  |  |
|------------------|--|--|--|--|--|--|
| Multi DBackup    |  |  |  |  |  |  |
| Map L2 Result    |  |  |  |  |  |  |
| 15               |  |  |  |  |  |  |
| 3                |  |  |  |  |  |  |
| 1                |  |  |  |  |  |  |
| 23               |  |  |  |  |  |  |
| 1                |  |  |  |  |  |  |
| 23               |  |  |  |  |  |  |
| Page 2 of 2 Stop |  |  |  |  |  |  |
|                  |  |  |  |  |  |  |

# Multi Call Result

| IS<br>PRI C | ALL |             |       | *         |      | ₩                 |
|-------------|-----|-------------|-------|-----------|------|-------------------|
| Setu<br>DTN | _   | gnal<br>Sca |       | ice<br>Mu | Call | Result<br>DBackup |
| Set         | _   |             |       | Мар       |      | Result            |
| Ln          | Dir | Ν           | lum   | ber       | Ts#  | * Result          |
| 153         | Out |             | 229   | 97        | 1    | FAIL              |
| 1           | Out | 8           | 22997 |           | 2    | OK                |
| 1           | Out |             | 22997 |           | 3    | OK                |
| 1           | Out | 228         |       | :997      |      | OK                |
|             | 8   | 8           |       |           | 8    | -2                |
|             |     |             |       |           |      |                   |
|             | į   | 2           |       |           |      |                   |
|             | (   | O P         | age   | 1 of      | 1 0  |                   |

| ofiles | -ISDN Phone N | lumber Lis | st          |   |             |   |                  |              |
|--------|---------------|------------|-------------|---|-------------|---|------------------|--------------|
| -      | Call Type     |            | Number Type |   | Number Plan |   | B Channel Number | Phone Number |
|        | VOICE         |            | Local       | • | Private     | - | 1                | 22997        |
|        |               |            |             |   |             |   |                  |              |
|        |               |            |             |   |             |   |                  |              |
|        |               |            |             |   |             |   |                  |              |
|        |               |            |             |   |             |   |                  |              |
|        |               |            |             |   |             |   |                  |              |
|        |               |            |             |   |             |   |                  |              |
|        |               |            |             |   |             |   |                  |              |
|        |               |            |             |   |             |   |                  |              |

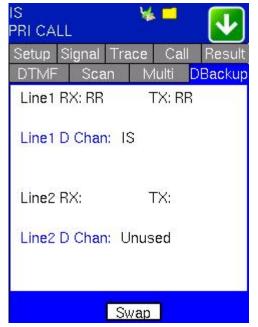
Alternately, the user can prepare a Multi Call list using ReVeal MTX software and upload the list to the test set.

# Go back to top

## 21.1.8 DTMF

During the call DTMF tones can be transmitted.

To transmit DTMF tones, access the DTMF tab. An alphanumeric keypad will be displayed. DTMF tones are transmitted as soon as they are typed.


|                  | DT                | MF              |                      |
|------------------|-------------------|-----------------|----------------------|
| S<br>PRI CALL    |                   | ¥ =             | •                    |
| Setup Si<br>DTMF | ignal Tra<br>Scan | ace Ca<br>Multi | II Result<br>DBackup |
|                  |                   |                 |                      |
| 1                | 2                 | 3               | 4                    |
| 5                | 6                 | 7               | 8                    |
| 9                | *                 | <u> </u>        | #                    |
| A                | В                 | С               | D                    |
|                  |                   |                 |                      |
|                  |                   |                 |                      |
|                  |                   |                 |                      |

## Go back to top

## 21.1.9 DBackup

To setup a backup D Channel, go to the Dbackup tab and press **Swap**. This operation is only applicable for 46B+2D Channel Config. Any other Channel Config will yield an error message when pressing Swap.

#### DBackup



Go back to top

# 21.2 ISDN PRI Monitor

#### **ISDN PRI Monitor** ¥k 🗖 J PRI CALL BMap Line1 BMap Line2 Result Signal Setup Trace Mode Monitor ▼ Call Control National ISDN ▼ Ln1 D Channel 16 Ln2 D Channel 16 Codec Type A law V L2 Filter Off Idle Code 01111111



## **PRI Monitor Action Menu**

| PRI CALL    |                 |   |
|-------------|-----------------|---|
| Set<br>BMap | Close           | × |
| Error       | Start           | S |
| ET:<br>LOS  | Error Injection | Ē |
| AIS         |                 | * |
| LOF         |                 | * |
| LOMF        |                 | * |
| RDI         |                 | * |
|             |                 |   |
| ¢           | Page 1 of 4 💿   |   |

The ISDN PRI Monitor's setup and results resemble those found in ISDN PRI Call. Please refer to <u>21.1 ISDN PRI Call</u> for more information on these respective sections:

- Setup: 21.1.1 Setup (PRI Call Setup)
- Signal: 21.1.2 Signal
- **BMap Line**: Detects active traffic on the timeslots. The user can listen to the conversation by pressing on active call cells. Please see <u>21.1.7 Multi Call</u> for more information.
- Trace: 21.1.3 Call Voice Setup
- **Result**: Press the green arrow to access the action menu and press Start to initiate BERT Testing. Please refer to <u>21.1.5</u> <u>Data Call BERT Results</u> for more details.

Go back to top

# 21.3 WAN IP Test

Please consult the factory.

# 22.0 Warranty and Software

# Warranty Period:

The warranty period for hardware, software and firmware is three (3) years from the date of shipment to the customer. The warranty period for battery pack, LCD touch panel, LCD protective cover, and accessories (including but not limited to patch cords, AC adaptor, SFP, USB adaptors, carrying case, carrying pouch) is limited to one (1) year only.

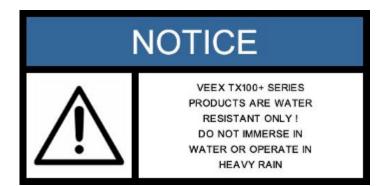
Hardware Coverage: VeEX Inc warrants hardware products against defects in materials and workmanship.

- Repair the products
- Replace hardware which proves to be defective

provided that the products that the customer elects to replace is returned to VeEX Inc by the customer along with proof of purchase within thirty (30) days of the request by the customer, freight prepaid.

**Software Coverage:** VeEX Inc warrants software and firmware materials against defects in materials and workmanship. During the warranty period, VeEX will, at its sole discretion,

- Repair the products
- · Replace software and/or firmware which proves to be defective


provided that the products that the customer elects to replace is returned to VeEX Inc by the customer along with proof of purchase within thirty (30) days of the request by the customer, freight prepaid.

Additionally, during the warranty period, VeEX Inc will provide, without charge to the customer, all fixes, patches and enhancements to the purchased software, firmware and software options. VeEX Inc does not warrant that all software or firmware defects will be corrected. New enhancements attached to a software option require the option to be purchased (at the time of order or the time of upgrade) in order to benefit from such enhancements.

**Limitations:** The warranty is only for the benefit of the customer and not for the benefit of any subsequent purchaser or licensee of any merchandise (hardware, software, firmware and/or accessories).

**Revoking the warranty:** VeEX Inc does not guarantee or warrant that the operation of the hardware, software or firmware will be uninterrupted or error-free. The warranty will not apply in any of the following cases:

- · Improper or inadequate maintenance by the customer
- Damage due to software installed by the customer on the unit without prior authorization (written) from VeEX Inc.
- Unauthorized alteration or misuse
- Damage occurred from operating the unit from outside of the environmental specifications for the product
- Improper installation by the customer



Go back to top

# 23.0 Product Specifications

The TX130M+ product specifications are available in pdf format by clicking the link or specification sheet below. Please note you

will need Adobe Reader version 9.0 or higher to open and view the file.

To get the latest free version of Adobe Reader, click here

# TX130M+ Product Family - Click here



Transport Expert

Go back to top

# 24.0 Certification and Declarations



#### What is CE?

The CE marking is a mandatory European marking for certain product groups to indicate conformity with the essential health and safety requirements set out in European Directives. To permit the use of a CE mark on a product, proof that the item meets the relevant requirements must be documented.

For a copy of the CE Declaration of Conformity relating to VeEX products, please contact VeEX customer service.

#### What is RoHS?

RoHS is the acronym for Restriction of Hazardous Substances. Also known as Directive 2002/95/EC, it originated in the European Union and restricts the use of specific hazardous materials found in electrical and electronic products. All applicable products imported into the EU market after July 1, 2006 must pass



RoHS compliance.

Click here for ROHS Statement relating to VeEX products

Go back to top

# 25.0 About VeEX

VeEX (Verification EXperts), is an innovative designer and manufacturer of test and measurement solutions addressing numerous technologies. Global presence through a worldwide distribution channel provides uncompromised product and technical support.

Visit us online at <u>www.veexinc.com</u> for latest updates and additional documentation.

#### **Corporate Headquarters**

VeEX Incorporated 2827 Lakeview Court Fremont, CA 94538 CA USA

Tel: +1 510 651 0500 Fax: +1 510 651 0505

#### **Customer Care**

Phone: + 1 510 651 0500 E-mail: <u>customercare@veexinc.com</u>

Go back to top

# **End of User Manual**